Metamath Proof Explorer


Theorem nn0sumshdiglem1

Description: Lemma 1 for nn0sumshdig (induction step). (Contributed by AV, 7-Jun-2020)

Ref Expression
Assertion nn0sumshdiglem1 ya0#b a = y a=k0..^ykdigit2a2k a0#b a=y+1a=k0..^y+1kdigit2a2k

Proof

Step Hyp Ref Expression
1 fveqeq2 a=x#b a = y #b x=y
2 id a=xa=x
3 oveq2 a=xkdigit2a=kdigit2x
4 3 oveq1d a=xkdigit2a2k=kdigit2x2k
5 4 sumeq2sdv a=xk0..^ykdigit2a2k=k0..^ykdigit2x2k
6 2 5 eqeq12d a=xa=k0..^ykdigit2a2kx=k0..^ykdigit2x2k
7 1 6 imbi12d a=x#b a = y a=k0..^ykdigit2a2k #b x=yx=k0..^ykdigit2x2k
8 7 cbvralvw a0#b a = y a=k0..^ykdigit2a2k x0#b x=yx=k0..^ykdigit2x2k
9 elnn0 a0aa=0
10 nn0sumshdiglemA aa2yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
11 10 expimpd aa2yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
12 nn0sumshdiglemB aa120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
13 12 expimpd aa120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
14 nneom aa2a120
15 11 13 14 mpjaodan ayx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
16 eqcom 1=y+1y+1=1
17 16 a1i y1=y+1y+1=1
18 nncn yy
19 1cnd y1
20 18 19 19 addlsub yy+1=1y=11
21 1m1e0 11=0
22 21 a1i y11=0
23 22 eqeq2d yy=11y=0
24 17 20 23 3bitrd y1=y+1y=0
25 oveq1 y=0y+1=0+1
26 25 oveq2d y=00..^y+1=0..^0+1
27 0p1e1 0+1=1
28 27 oveq2i 0..^0+1=0..^1
29 fzo01 0..^1=0
30 28 29 eqtri 0..^0+1=0
31 26 30 eqtrdi y=00..^y+1=0
32 31 sumeq1d y=0k0..^y+1kdigit202k=k0kdigit202k
33 0cn 0
34 oveq1 k=0kdigit20=0digit20
35 2nn 2
36 0z 0
37 dig0 200digit20=0
38 35 36 37 mp2an 0digit20=0
39 34 38 eqtrdi k=0kdigit20=0
40 oveq2 k=02k=20
41 2cn 2
42 exp0 220=1
43 41 42 ax-mp 20=1
44 40 43 eqtrdi k=02k=1
45 39 44 oveq12d k=0kdigit202k=01
46 1re 1
47 mul02lem2 101=0
48 46 47 ax-mp 01=0
49 45 48 eqtrdi k=0kdigit202k=0
50 49 sumsn 00k0kdigit202k=0
51 33 33 50 mp2an k0kdigit202k=0
52 32 51 eqtr2di y=00=k0..^y+1kdigit202k
53 24 52 syl6bi y1=y+10=k0..^y+1kdigit202k
54 53 adantl a=0y1=y+10=k0..^y+1kdigit202k
55 fveq2 a=0#b a = #b 0
56 blen0 #b 0 = 1
57 55 56 eqtrdi a=0#b a = 1
58 57 eqeq1d a=0#b a = y+1 1=y+1
59 id a=0a=0
60 oveq2 a=0kdigit2a=kdigit20
61 60 oveq1d a=0kdigit2a2k=kdigit202k
62 61 sumeq2sdv a=0k0..^y+1kdigit2a2k=k0..^y+1kdigit202k
63 59 62 eqeq12d a=0a=k0..^y+1kdigit2a2k0=k0..^y+1kdigit202k
64 58 63 imbi12d a=0#b a = y+1 a=k0..^y+1kdigit2a2k 1=y+10=k0..^y+1kdigit202k
65 64 adantr a=0y#b a = y+1 a=k0..^y+1kdigit2a2k 1=y+10=k0..^y+1kdigit202k
66 54 65 mpbird a=0y#b a = y+1 a=k0..^y+1kdigit2a2k
67 66 a1d a=0yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
68 67 expimpd a=0yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
69 15 68 jaoi aa=0yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
70 9 69 sylbi a0yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
71 70 com12 yx0#b x = y x=k0..^ykdigit2x2k a0#b a=y+1a=k0..^y+1kdigit2a2k
72 71 ralrimiv yx0#b x = y x=k0..^ykdigit2x2k a0#b a=y+1a=k0..^y+1kdigit2a2k
73 72 ex yx0#b x = y x=k0..^ykdigit2x2k a0#b a=y+1a=k0..^y+1kdigit2a2k
74 8 73 biimtrid ya0#b a = y a=k0..^ykdigit2a2k a0#b a=y+1a=k0..^y+1kdigit2a2k