Description: Lemma 1 for nn0sumshdig (induction step). (Contributed by AV, 7-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0sumshdiglem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 | |
|
2 | id | |
|
3 | oveq2 | |
|
4 | 3 | oveq1d | |
5 | 4 | sumeq2sdv | |
6 | 2 5 | eqeq12d | |
7 | 1 6 | imbi12d | |
8 | 7 | cbvralvw | |
9 | elnn0 | |
|
10 | nn0sumshdiglemA | |
|
11 | 10 | expimpd | |
12 | nn0sumshdiglemB | |
|
13 | 12 | expimpd | |
14 | nneom | |
|
15 | 11 13 14 | mpjaodan | |
16 | eqcom | |
|
17 | 16 | a1i | |
18 | nncn | |
|
19 | 1cnd | |
|
20 | 18 19 19 | addlsub | |
21 | 1m1e0 | |
|
22 | 21 | a1i | |
23 | 22 | eqeq2d | |
24 | 17 20 23 | 3bitrd | |
25 | oveq1 | |
|
26 | 25 | oveq2d | |
27 | 0p1e1 | |
|
28 | 27 | oveq2i | |
29 | fzo01 | |
|
30 | 28 29 | eqtri | |
31 | 26 30 | eqtrdi | |
32 | 31 | sumeq1d | |
33 | 0cn | |
|
34 | oveq1 | |
|
35 | 2nn | |
|
36 | 0z | |
|
37 | dig0 | |
|
38 | 35 36 37 | mp2an | |
39 | 34 38 | eqtrdi | |
40 | oveq2 | |
|
41 | 2cn | |
|
42 | exp0 | |
|
43 | 41 42 | ax-mp | |
44 | 40 43 | eqtrdi | |
45 | 39 44 | oveq12d | |
46 | 1re | |
|
47 | mul02lem2 | |
|
48 | 46 47 | ax-mp | |
49 | 45 48 | eqtrdi | |
50 | 49 | sumsn | |
51 | 33 33 50 | mp2an | |
52 | 32 51 | eqtr2di | |
53 | 24 52 | syl6bi | |
54 | 53 | adantl | |
55 | fveq2 | |
|
56 | blen0 | |
|
57 | 55 56 | eqtrdi | |
58 | 57 | eqeq1d | |
59 | id | |
|
60 | oveq2 | |
|
61 | 60 | oveq1d | |
62 | 61 | sumeq2sdv | |
63 | 59 62 | eqeq12d | |
64 | 58 63 | imbi12d | |
65 | 64 | adantr | |
66 | 54 65 | mpbird | |
67 | 66 | a1d | |
68 | 67 | expimpd | |
69 | 15 68 | jaoi | |
70 | 9 69 | sylbi | |
71 | 70 | com12 | |
72 | 71 | ralrimiv | |
73 | 72 | ex | |
74 | 8 73 | biimtrid | |