Metamath Proof Explorer


Theorem nnsum4primesoddALTV

Description: If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion nnsum4primesoddALTV mOdd7<mmGoldbachOddN8NOddf13N=k=13fk

Proof

Step Hyp Ref Expression
1 breq2 m=N7<m7<N
2 eleq1 m=NmGoldbachOddNGoldbachOdd
3 1 2 imbi12d m=N7<mmGoldbachOdd7<NNGoldbachOdd
4 3 rspcv NOddmOdd7<mmGoldbachOdd7<NNGoldbachOdd
5 4 adantl N8NOddmOdd7<mmGoldbachOdd7<NNGoldbachOdd
6 eluz2 N88N8N
7 7lt8 7<8
8 7re 7
9 8 a1i N7
10 8re 8
11 10 a1i N8
12 zre NN
13 ltletr 78N7<88N7<N
14 9 11 12 13 syl3anc N7<88N7<N
15 7 14 mpani N8N7<N
16 15 imp N8N7<N
17 16 3adant1 8N8N7<N
18 6 17 sylbi N87<N
19 18 adantr N8NOdd7<N
20 pm2.27 7<N7<NNGoldbachOddNGoldbachOdd
21 19 20 syl N8NOdd7<NNGoldbachOddNGoldbachOdd
22 isgbo NGoldbachOddNOddpqrpOddqOddrOddN=p+q+r
23 1ex 1V
24 2ex 2V
25 3ex 3V
26 vex pV
27 vex qV
28 vex rV
29 1ne2 12
30 1re 1
31 1lt3 1<3
32 30 31 ltneii 13
33 2re 2
34 2lt3 2<3
35 33 34 ltneii 23
36 23 24 25 26 27 28 29 32 35 ftp 1p2q3r:123pqr
37 36 a1i pqr1p2q3r:123pqr
38 1p2e3 1+2=3
39 38 eqcomi 3=1+2
40 39 oveq2i 13=11+2
41 1z 1
42 fztp 111+2=11+11+2
43 41 42 ax-mp 11+2=11+11+2
44 eqid 1=1
45 id 1=11=1
46 1p1e2 1+1=2
47 46 a1i 1=11+1=2
48 38 a1i 1=11+2=3
49 45 47 48 tpeq123d 1=111+11+2=123
50 44 49 ax-mp 11+11+2=123
51 40 43 50 3eqtri 13=123
52 51 feq2i 1p2q3r:13pqr1p2q3r:123pqr
53 37 52 sylibr pqr1p2q3r:13pqr
54 df-3an pqrpqr
55 26 27 28 tpss pqrpqr
56 54 55 sylbb1 pqrpqr
57 53 56 fssd pqr1p2q3r:13
58 prmex V
59 ovex 13V
60 58 59 pm3.2i V13V
61 elmapg V13V1p2q3r131p2q3r:13
62 60 61 mp1i pqr1p2q3r131p2q3r:13
63 57 62 mpbird pqr1p2q3r13
64 fveq1 f=1p2q3rfk=1p2q3rk
65 64 sumeq2sdv f=1p2q3rk=13fk=k=131p2q3rk
66 65 eqeq2d f=1p2q3rp+q+r=k=13fkp+q+r=k=131p2q3rk
67 66 adantl pqrf=1p2q3rp+q+r=k=13fkp+q+r=k=131p2q3rk
68 51 a1i pqr13=123
69 68 sumeq1d pqrk=131p2q3rk=k1231p2q3rk
70 fveq2 k=11p2q3rk=1p2q3r1
71 23 26 fvtp1 12131p2q3r1=p
72 29 32 71 mp2an 1p2q3r1=p
73 70 72 eqtrdi k=11p2q3rk=p
74 fveq2 k=21p2q3rk=1p2q3r2
75 24 27 fvtp2 12231p2q3r2=q
76 29 35 75 mp2an 1p2q3r2=q
77 74 76 eqtrdi k=21p2q3rk=q
78 fveq2 k=31p2q3rk=1p2q3r3
79 25 28 fvtp3 13231p2q3r3=r
80 32 35 79 mp2an 1p2q3r3=r
81 78 80 eqtrdi k=31p2q3rk=r
82 prmz pp
83 82 zcnd pp
84 prmz qq
85 84 zcnd qq
86 prmz rr
87 86 zcnd rr
88 83 85 87 3anim123i pqrpqr
89 88 3expa pqrpqr
90 2z 2
91 3z 3
92 41 90 91 3pm3.2i 123
93 92 a1i pqr123
94 29 a1i pqr12
95 32 a1i pqr13
96 35 a1i pqr23
97 73 77 81 89 93 94 95 96 sumtp pqrk1231p2q3rk=p+q+r
98 69 97 eqtr2d pqrp+q+r=k=131p2q3rk
99 63 67 98 rspcedvd pqrf13p+q+r=k=13fk
100 eqeq1 N=p+q+rN=k=13fkp+q+r=k=13fk
101 100 rexbidv N=p+q+rf13N=k=13fkf13p+q+r=k=13fk
102 99 101 syl5ibrcom pqrN=p+q+rf13N=k=13fk
103 102 adantld pqrpOddqOddrOddN=p+q+rf13N=k=13fk
104 103 rexlimdva pqrpOddqOddrOddN=p+q+rf13N=k=13fk
105 104 rexlimivv pqrpOddqOddrOddN=p+q+rf13N=k=13fk
106 105 adantl NOddpqrpOddqOddrOddN=p+q+rf13N=k=13fk
107 22 106 sylbi NGoldbachOddf13N=k=13fk
108 107 a1i N8NOddNGoldbachOddf13N=k=13fk
109 5 21 108 3syld N8NOddmOdd7<mmGoldbachOddf13N=k=13fk
110 109 com12 mOdd7<mmGoldbachOddN8NOddf13N=k=13fk