Metamath Proof Explorer


Theorem noinfprefixmo

Description: In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion noinfprefixmo ANo*xuAGdomuvA¬u<svusucG=vsucGuG=x

Proof

Step Hyp Ref Expression
1 reeanv uApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yuAGdomuvA¬u<svusucG=vsucGuG=xpAGdompvA¬p<svpsucG=vsucGpG=y
2 breq2 v=pu<svu<sp
3 2 notbid v=p¬u<sv¬u<sp
4 reseq1 v=pvsucG=psucG
5 4 eqeq2d v=pusucG=vsucGusucG=psucG
6 3 5 imbi12d v=p¬u<svusucG=vsucG¬u<spusucG=psucG
7 simprl2 uApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yvA¬u<svusucG=vsucG
8 7 adantl ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yvA¬u<svusucG=vsucG
9 simprlr ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=ypA
10 6 8 9 rspcdva ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=y¬u<spusucG=psucG
11 breq2 v=up<svp<su
12 11 notbid v=u¬p<sv¬p<su
13 reseq1 v=uvsucG=usucG
14 13 eqeq2d v=upsucG=vsucGpsucG=usucG
15 12 14 imbi12d v=u¬p<svpsucG=vsucG¬p<supsucG=usucG
16 simprr2 uApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yvA¬p<svpsucG=vsucG
17 16 adantl ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yvA¬p<svpsucG=vsucG
18 simprll ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yuA
19 15 17 18 rspcdva ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=y¬p<supsucG=usucG
20 eqcom psucG=usucGusucG=psucG
21 19 20 imbitrdi ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=y¬p<suusucG=psucG
22 simpl ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yANo
23 22 18 sseldd ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yuNo
24 22 9 sseldd ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=ypNo
25 sltso <sOrNo
26 soasym <sOrNouNopNou<sp¬p<su
27 25 26 mpan uNopNou<sp¬p<su
28 23 24 27 syl2anc ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yu<sp¬p<su
29 imor u<sp¬p<su¬u<sp¬p<su
30 28 29 sylib ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=y¬u<sp¬p<su
31 10 21 30 mpjaod ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yusucG=psucG
32 31 fveq1d ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yusucGG=psucGG
33 simprl1 uApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yGdomu
34 33 adantl ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yGdomu
35 sucidg GdomuGsucG
36 34 35 syl ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yGsucG
37 36 fvresd ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yusucGG=uG
38 36 fvresd ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=ypsucGG=pG
39 32 37 38 3eqtr3d ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yuG=pG
40 simprl3 uApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yuG=x
41 40 adantl ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yuG=x
42 simprr3 uApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=ypG=y
43 42 adantl ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=ypG=y
44 39 41 43 3eqtr3d ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yx=y
45 44 expr ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yx=y
46 45 rexlimdvva ANouApAGdomuvA¬u<svusucG=vsucGuG=xGdompvA¬p<svpsucG=vsucGpG=yx=y
47 1 46 biimtrrid ANouAGdomuvA¬u<svusucG=vsucGuG=xpAGdompvA¬p<svpsucG=vsucGpG=yx=y
48 47 alrimivv ANoxyuAGdomuvA¬u<svusucG=vsucGuG=xpAGdompvA¬p<svpsucG=vsucGpG=yx=y
49 eqeq2 x=yuG=xuG=y
50 49 3anbi3d x=yGdomuvA¬u<svusucG=vsucGuG=xGdomuvA¬u<svusucG=vsucGuG=y
51 50 rexbidv x=yuAGdomuvA¬u<svusucG=vsucGuG=xuAGdomuvA¬u<svusucG=vsucGuG=y
52 dmeq u=pdomu=domp
53 52 eleq2d u=pGdomuGdomp
54 breq1 u=pu<svp<sv
55 54 notbid u=p¬u<sv¬p<sv
56 reseq1 u=pusucG=psucG
57 56 eqeq1d u=pusucG=vsucGpsucG=vsucG
58 55 57 imbi12d u=p¬u<svusucG=vsucG¬p<svpsucG=vsucG
59 58 ralbidv u=pvA¬u<svusucG=vsucGvA¬p<svpsucG=vsucG
60 fveq1 u=puG=pG
61 60 eqeq1d u=puG=ypG=y
62 53 59 61 3anbi123d u=pGdomuvA¬u<svusucG=vsucGuG=yGdompvA¬p<svpsucG=vsucGpG=y
63 62 cbvrexvw uAGdomuvA¬u<svusucG=vsucGuG=ypAGdompvA¬p<svpsucG=vsucGpG=y
64 51 63 bitrdi x=yuAGdomuvA¬u<svusucG=vsucGuG=xpAGdompvA¬p<svpsucG=vsucGpG=y
65 64 mo4 *xuAGdomuvA¬u<svusucG=vsucGuG=xxyuAGdomuvA¬u<svusucG=vsucGuG=xpAGdompvA¬p<svpsucG=vsucGpG=yx=y
66 48 65 sylibr ANo*xuAGdomuvA¬u<svusucG=vsucGuG=x