Description: In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 8-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | noinfprefixmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reeanv | |
|
2 | breq2 | |
|
3 | 2 | notbid | |
4 | reseq1 | |
|
5 | 4 | eqeq2d | |
6 | 3 5 | imbi12d | |
7 | simprl2 | |
|
8 | 7 | adantl | |
9 | simprlr | |
|
10 | 6 8 9 | rspcdva | |
11 | breq2 | |
|
12 | 11 | notbid | |
13 | reseq1 | |
|
14 | 13 | eqeq2d | |
15 | 12 14 | imbi12d | |
16 | simprr2 | |
|
17 | 16 | adantl | |
18 | simprll | |
|
19 | 15 17 18 | rspcdva | |
20 | eqcom | |
|
21 | 19 20 | imbitrdi | |
22 | simpl | |
|
23 | 22 18 | sseldd | |
24 | 22 9 | sseldd | |
25 | sltso | |
|
26 | soasym | |
|
27 | 25 26 | mpan | |
28 | 23 24 27 | syl2anc | |
29 | imor | |
|
30 | 28 29 | sylib | |
31 | 10 21 30 | mpjaod | |
32 | 31 | fveq1d | |
33 | simprl1 | |
|
34 | 33 | adantl | |
35 | sucidg | |
|
36 | 34 35 | syl | |
37 | 36 | fvresd | |
38 | 36 | fvresd | |
39 | 32 37 38 | 3eqtr3d | |
40 | simprl3 | |
|
41 | 40 | adantl | |
42 | simprr3 | |
|
43 | 42 | adantl | |
44 | 39 41 43 | 3eqtr3d | |
45 | 44 | expr | |
46 | 45 | rexlimdvva | |
47 | 1 46 | biimtrrid | |
48 | 47 | alrimivv | |
49 | eqeq2 | |
|
50 | 49 | 3anbi3d | |
51 | 50 | rexbidv | |
52 | dmeq | |
|
53 | 52 | eleq2d | |
54 | breq1 | |
|
55 | 54 | notbid | |
56 | reseq1 | |
|
57 | 56 | eqeq1d | |
58 | 55 57 | imbi12d | |
59 | 58 | ralbidv | |
60 | fveq1 | |
|
61 | 60 | eqeq1d | |
62 | 53 59 61 | 3anbi123d | |
63 | 62 | cbvrexvw | |
64 | 51 63 | bitrdi | |
65 | 64 | mo4 | |
66 | 48 65 | sylibr | |