Metamath Proof Explorer


Theorem nosupbnd1lem3

Description: Lemma for nosupbnd1 . If U is a prolongment of S and in A , then ( Udom S ) is not 2o . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
Assertion nosupbnd1lem3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 2 𝑜

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 1 nosupno A No A V S No
3 2 3ad2ant2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S S No
4 nodmord S No Ord dom S
5 ordirr Ord dom S ¬ dom S dom S
6 3 4 5 3syl ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ dom S dom S
7 simpl3l ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 U A
8 ndmfv ¬ dom S dom U U dom S =
9 2on 2 𝑜 On
10 9 elexi 2 𝑜 V
11 10 prid2 2 𝑜 1 𝑜 2 𝑜
12 11 nosgnn0i 2 𝑜
13 neeq1 U dom S = U dom S 2 𝑜 2 𝑜
14 12 13 mpbiri U dom S = U dom S 2 𝑜
15 14 neneqd U dom S = ¬ U dom S = 2 𝑜
16 8 15 syl ¬ dom S dom U ¬ U dom S = 2 𝑜
17 16 con4i U dom S = 2 𝑜 dom S dom U
18 17 adantl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 dom S dom U
19 simpl2l ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 A No
20 19 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U A No
21 7 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U A
22 20 21 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U No
23 simprl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U q A
24 20 23 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U q No
25 3 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 S No
26 25 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U S No
27 nodmon S No dom S On
28 26 27 syl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U dom S On
29 simpl3r ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 U dom S = S
30 29 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U dom S = S
31 simpll1 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U ¬ x A y A ¬ x < s y
32 simpll2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U A No A V
33 simpll3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U A U dom S = S
34 simpr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U q A ¬ q < s U
35 1 nosupbnd1lem2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S q A ¬ q < s U q dom S = S
36 31 32 33 34 35 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U q dom S = S
37 30 36 eqtr4d ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U dom S = q dom S
38 simplr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U dom S = 2 𝑜
39 simprr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U ¬ q < s U
40 nolesgn2ores U No q No dom S On U dom S = q dom S U dom S = 2 𝑜 ¬ q < s U U suc dom S = q suc dom S
41 22 24 28 37 38 39 40 syl321anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U suc dom S = q suc dom S
42 41 expr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U suc dom S = q suc dom S
43 42 ralrimiva ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 q A ¬ q < s U U suc dom S = q suc dom S
44 dmeq p = U dom p = dom U
45 44 eleq2d p = U dom S dom p dom S dom U
46 breq2 p = U q < s p q < s U
47 46 notbid p = U ¬ q < s p ¬ q < s U
48 reseq1 p = U p suc dom S = U suc dom S
49 48 eqeq1d p = U p suc dom S = q suc dom S U suc dom S = q suc dom S
50 47 49 imbi12d p = U ¬ q < s p p suc dom S = q suc dom S ¬ q < s U U suc dom S = q suc dom S
51 50 ralbidv p = U q A ¬ q < s p p suc dom S = q suc dom S q A ¬ q < s U U suc dom S = q suc dom S
52 45 51 anbi12d p = U dom S dom p q A ¬ q < s p p suc dom S = q suc dom S dom S dom U q A ¬ q < s U U suc dom S = q suc dom S
53 52 rspcev U A dom S dom U q A ¬ q < s U U suc dom S = q suc dom S p A dom S dom p q A ¬ q < s p p suc dom S = q suc dom S
54 7 18 43 53 syl12anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 p A dom S dom p q A ¬ q < s p p suc dom S = q suc dom S
55 1 nosupdm ¬ x A y A ¬ x < s y dom S = z | p A z dom p q A ¬ q < s p p suc z = q suc z
56 55 eleq2d ¬ x A y A ¬ x < s y dom S dom S dom S z | p A z dom p q A ¬ q < s p p suc z = q suc z
57 56 3ad2ant1 ¬ x A y A ¬ x < s y A No A V U A U dom S = S dom S dom S dom S z | p A z dom p q A ¬ q < s p p suc z = q suc z
58 eleq1 z = dom S z dom p dom S dom p
59 suceq z = dom S suc z = suc dom S
60 59 reseq2d z = dom S p suc z = p suc dom S
61 59 reseq2d z = dom S q suc z = q suc dom S
62 60 61 eqeq12d z = dom S p suc z = q suc z p suc dom S = q suc dom S
63 62 imbi2d z = dom S ¬ q < s p p suc z = q suc z ¬ q < s p p suc dom S = q suc dom S
64 63 ralbidv z = dom S q A ¬ q < s p p suc z = q suc z q A ¬ q < s p p suc dom S = q suc dom S
65 58 64 anbi12d z = dom S z dom p q A ¬ q < s p p suc z = q suc z dom S dom p q A ¬ q < s p p suc dom S = q suc dom S
66 65 rexbidv z = dom S p A z dom p q A ¬ q < s p p suc z = q suc z p A dom S dom p q A ¬ q < s p p suc dom S = q suc dom S
67 66 elabg dom S On dom S z | p A z dom p q A ¬ q < s p p suc z = q suc z p A dom S dom p q A ¬ q < s p p suc dom S = q suc dom S
68 3 27 67 3syl ¬ x A y A ¬ x < s y A No A V U A U dom S = S dom S z | p A z dom p q A ¬ q < s p p suc z = q suc z p A dom S dom p q A ¬ q < s p p suc dom S = q suc dom S
69 57 68 bitrd ¬ x A y A ¬ x < s y A No A V U A U dom S = S dom S dom S p A dom S dom p q A ¬ q < s p p suc dom S = q suc dom S
70 69 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 dom S dom S p A dom S dom p q A ¬ q < s p p suc dom S = q suc dom S
71 54 70 mpbird ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 2 𝑜 dom S dom S
72 6 71 mtand ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ U dom S = 2 𝑜
73 72 neqned ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 2 𝑜