Metamath Proof Explorer


Theorem oddcomabszz

Description: An odd function which takes nonnegative values on nonnegative arguments commutes with abs . (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Hypotheses oddcomabszz.1 φ x A
oddcomabszz.2 φ x 0 x 0 A
oddcomabszz.3 φ y C = B
oddcomabszz.4 x = y A = B
oddcomabszz.5 x = y A = C
oddcomabszz.6 x = D A = E
oddcomabszz.7 x = D A = F
Assertion oddcomabszz φ D E = F

Proof

Step Hyp Ref Expression
1 oddcomabszz.1 φ x A
2 oddcomabszz.2 φ x 0 x 0 A
3 oddcomabszz.3 φ y C = B
4 oddcomabszz.4 x = y A = B
5 oddcomabszz.5 x = y A = C
6 oddcomabszz.6 x = D A = E
7 oddcomabszz.7 x = D A = F
8 eleq1 a = D a D
9 8 anbi2d a = D φ a φ D
10 csbeq1 a = D a / x A = D / x A
11 10 fveq2d a = D a / x A = D / x A
12 fveq2 a = D a = D
13 12 csbeq1d a = D a / x A = D / x A
14 11 13 eqeq12d a = D a / x A = a / x A D / x A = D / x A
15 9 14 imbi12d a = D φ a a / x A = a / x A φ D D / x A = D / x A
16 nfv x φ a
17 nfcsb1v _ x a / x A
18 17 nfel1 x a / x A
19 16 18 nfim x φ a a / x A
20 eleq1 x = a x a
21 20 anbi2d x = a φ x φ a
22 csbeq1a x = a A = a / x A
23 22 eleq1d x = a A a / x A
24 21 23 imbi12d x = a φ x A φ a a / x A
25 19 24 1 chvarfv φ a a / x A
26 25 adantr φ a 0 a a / x A
27 nfv x φ a 0 a
28 nfcv _ x 0
29 nfcv _ x
30 28 29 17 nfbr x 0 a / x A
31 27 30 nfim x φ a 0 a 0 a / x A
32 breq2 x = a 0 x 0 a
33 20 32 3anbi23d x = a φ x 0 x φ a 0 a
34 22 breq2d x = a 0 A 0 a / x A
35 33 34 imbi12d x = a φ x 0 x 0 A φ a 0 a 0 a / x A
36 31 35 2 chvarfv φ a 0 a 0 a / x A
37 36 3expa φ a 0 a 0 a / x A
38 26 37 absidd φ a 0 a a / x A = a / x A
39 zre a a
40 39 ad2antlr φ a 0 a a
41 absid a 0 a a = a
42 40 41 sylancom φ a 0 a a = a
43 42 csbeq1d φ a 0 a a / x A = a / x A
44 38 43 eqtr4d φ a 0 a a / x A = a / x A
45 nfv y φ a a / x A = a / x A
46 eleq1 y = a y a
47 46 anbi2d y = a φ y φ a
48 negex y V
49 48 5 csbie y / x A = C
50 negeq y = a y = a
51 50 csbeq1d y = a y / x A = a / x A
52 49 51 syl5eqr y = a C = a / x A
53 vex y V
54 53 4 csbie y / x A = B
55 csbeq1 y = a y / x A = a / x A
56 54 55 syl5eqr y = a B = a / x A
57 56 negeqd y = a B = a / x A
58 52 57 eqeq12d y = a C = B a / x A = a / x A
59 47 58 imbi12d y = a φ y C = B φ a a / x A = a / x A
60 45 59 3 chvarfv φ a a / x A = a / x A
61 60 adantr φ a a 0 a / x A = a / x A
62 39 ad2antlr φ a a 0 a
63 absnid a a 0 a = a
64 62 63 sylancom φ a a 0 a = a
65 64 csbeq1d φ a a 0 a / x A = a / x A
66 25 adantr φ a a 0 a / x A
67 znegcl a a
68 nfv x φ a 0 a
69 nfcsb1v _ x a / x A
70 28 29 69 nfbr x 0 a / x A
71 68 70 nfim x φ a 0 a 0 a / x A
72 negex a V
73 eleq1 x = a x a
74 breq2 x = a 0 x 0 a
75 73 74 3anbi23d x = a φ x 0 x φ a 0 a
76 csbeq1a x = a A = a / x A
77 76 breq2d x = a 0 A 0 a / x A
78 75 77 imbi12d x = a φ x 0 x 0 A φ a 0 a 0 a / x A
79 71 72 78 2 vtoclf φ a 0 a 0 a / x A
80 79 3expia φ a 0 a 0 a / x A
81 67 80 sylan2 φ a 0 a 0 a / x A
82 60 breq2d φ a 0 a / x A 0 a / x A
83 81 82 sylibd φ a 0 a 0 a / x A
84 39 adantl φ a a
85 84 le0neg1d φ a a 0 0 a
86 25 le0neg1d φ a a / x A 0 0 a / x A
87 83 85 86 3imtr4d φ a a 0 a / x A 0
88 87 imp φ a a 0 a / x A 0
89 66 88 absnidd φ a a 0 a / x A = a / x A
90 61 65 89 3eqtr4rd φ a a 0 a / x A = a / x A
91 0re 0
92 letric 0 a 0 a a 0
93 91 39 92 sylancr a 0 a a 0
94 93 adantl φ a 0 a a 0
95 44 90 94 mpjaodan φ a a / x A = a / x A
96 15 95 vtoclg D φ D D / x A = D / x A
97 96 anabsi7 φ D D / x A = D / x A
98 nfcvd D _ x E
99 98 6 csbiegf D D / x A = E
100 99 fveq2d D D / x A = E
101 100 adantl φ D D / x A = E
102 fvex D V
103 102 7 csbie D / x A = F
104 103 a1i φ D D / x A = F
105 97 101 104 3eqtr3d φ D E = F