Metamath Proof Explorer


Theorem orbsta

Description: The Orbit-Stabilizer theorem. The mapping F is a bijection from the cosets of the stabilizer subgroup of A to the orbit of A . (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses gasta.1 X=BaseG
gasta.2 H=uX|u˙A=A
orbsta.r ˙=G~QGH
orbsta.f F=rankXk˙k˙A
orbsta.o O=xy|xyYgXg˙x=y
Assertion orbsta ˙GGrpActYAYF:X/˙1-1 ontoAO

Proof

Step Hyp Ref Expression
1 gasta.1 X=BaseG
2 gasta.2 H=uX|u˙A=A
3 orbsta.r ˙=G~QGH
4 orbsta.f F=rankXk˙k˙A
5 orbsta.o O=xy|xyYgXg˙x=y
6 1 2 3 4 orbstafun ˙GGrpActYAYFunF
7 simpr ˙GGrpActYAYAY
8 7 adantr ˙GGrpActYAYkXAY
9 1 gaf ˙GGrpActY˙:X×YY
10 9 adantr ˙GGrpActYAY˙:X×YY
11 10 adantr ˙GGrpActYAYkX˙:X×YY
12 simpr ˙GGrpActYAYkXkX
13 11 12 8 fovcdmd ˙GGrpActYAYkXk˙AY
14 eqid k˙A=k˙A
15 oveq1 h=kh˙A=k˙A
16 15 eqeq1d h=kh˙A=k˙Ak˙A=k˙A
17 16 rspcev kXk˙A=k˙AhXh˙A=k˙A
18 12 14 17 sylancl ˙GGrpActYAYkXhXh˙A=k˙A
19 5 gaorb AOk˙AAYk˙AYhXh˙A=k˙A
20 8 13 18 19 syl3anbrc ˙GGrpActYAYkXAOk˙A
21 ovex k˙AV
22 elecg k˙AVAYk˙AAOAOk˙A
23 21 8 22 sylancr ˙GGrpActYAYkXk˙AAOAOk˙A
24 20 23 mpbird ˙GGrpActYAYkXk˙AAO
25 1 2 gastacl ˙GGrpActYAYHSubGrpG
26 1 3 eqger HSubGrpG˙ErX
27 25 26 syl ˙GGrpActYAY˙ErX
28 1 fvexi XV
29 28 a1i ˙GGrpActYAYXV
30 4 24 27 29 qliftf ˙GGrpActYAYFunFF:X/˙AO
31 6 30 mpbid ˙GGrpActYAYF:X/˙AO
32 eqid X/˙=X/˙
33 fveqeq2 z˙=aFz˙=FbFa=Fb
34 eqeq1 z˙=az˙=ba=b
35 33 34 imbi12d z˙=aFz˙=Fbz˙=bFa=Fba=b
36 35 ralbidv z˙=abX/˙Fz˙=Fbz˙=bbX/˙Fa=Fba=b
37 fveq2 w˙=bFw˙=Fb
38 37 eqeq2d w˙=bFz˙=Fw˙Fz˙=Fb
39 eqeq2 w˙=bz˙=w˙z˙=b
40 38 39 imbi12d w˙=bFz˙=Fw˙z˙=w˙Fz˙=Fbz˙=b
41 1 2 3 4 orbstaval ˙GGrpActYAYzXFz˙=z˙A
42 41 adantrr ˙GGrpActYAYzXwXFz˙=z˙A
43 1 2 3 4 orbstaval ˙GGrpActYAYwXFw˙=w˙A
44 43 adantrl ˙GGrpActYAYzXwXFw˙=w˙A
45 42 44 eqeq12d ˙GGrpActYAYzXwXFz˙=Fw˙z˙A=w˙A
46 1 2 3 gastacos ˙GGrpActYAYzXwXz˙wz˙A=w˙A
47 27 adantr ˙GGrpActYAYzXwX˙ErX
48 simprl ˙GGrpActYAYzXwXzX
49 47 48 erth ˙GGrpActYAYzXwXz˙wz˙=w˙
50 45 46 49 3bitr2d ˙GGrpActYAYzXwXFz˙=Fw˙z˙=w˙
51 50 biimpd ˙GGrpActYAYzXwXFz˙=Fw˙z˙=w˙
52 51 anassrs ˙GGrpActYAYzXwXFz˙=Fw˙z˙=w˙
53 32 40 52 ectocld ˙GGrpActYAYzXbX/˙Fz˙=Fbz˙=b
54 53 ralrimiva ˙GGrpActYAYzXbX/˙Fz˙=Fbz˙=b
55 32 36 54 ectocld ˙GGrpActYAYaX/˙bX/˙Fa=Fba=b
56 55 ralrimiva ˙GGrpActYAYaX/˙bX/˙Fa=Fba=b
57 dff13 F:X/˙1-1AOF:X/˙AOaX/˙bX/˙Fa=Fba=b
58 31 56 57 sylanbrc ˙GGrpActYAYF:X/˙1-1AO
59 vex hV
60 elecg hVAYhAOAOh
61 59 7 60 sylancr ˙GGrpActYAYhAOAOh
62 5 gaorb AOhAYhYwXw˙A=h
63 61 62 bitrdi ˙GGrpActYAYhAOAYhYwXw˙A=h
64 63 biimpa ˙GGrpActYAYhAOAYhYwXw˙A=h
65 64 simp3d ˙GGrpActYAYhAOwXw˙A=h
66 3 ovexi ˙V
67 66 ecelqsi wXw˙X/˙
68 43 eqcomd ˙GGrpActYAYwXw˙A=Fw˙
69 fveq2 z=w˙Fz=Fw˙
70 69 rspceeqv w˙X/˙w˙A=Fw˙zX/˙w˙A=Fz
71 67 68 70 syl2an2 ˙GGrpActYAYwXzX/˙w˙A=Fz
72 eqeq1 w˙A=hw˙A=Fzh=Fz
73 72 rexbidv w˙A=hzX/˙w˙A=FzzX/˙h=Fz
74 71 73 syl5ibcom ˙GGrpActYAYwXw˙A=hzX/˙h=Fz
75 74 rexlimdva ˙GGrpActYAYwXw˙A=hzX/˙h=Fz
76 75 imp ˙GGrpActYAYwXw˙A=hzX/˙h=Fz
77 65 76 syldan ˙GGrpActYAYhAOzX/˙h=Fz
78 77 ralrimiva ˙GGrpActYAYhAOzX/˙h=Fz
79 dffo3 F:X/˙ontoAOF:X/˙AOhAOzX/˙h=Fz
80 31 78 79 sylanbrc ˙GGrpActYAYF:X/˙ontoAO
81 df-f1o F:X/˙1-1 ontoAOF:X/˙1-1AOF:X/˙ontoAO
82 58 80 81 sylanbrc ˙GGrpActYAYF:X/˙1-1 ontoAO