Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovnlerp.x | |
|
ovnlerp.n0 | |
||
ovnlerp.a | |
||
ovnlerp.e | |
||
ovnlerp.m | |
||
Assertion | ovnlerp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnlerp.x | |
|
2 | ovnlerp.n0 | |
|
3 | ovnlerp.a | |
|
4 | ovnlerp.e | |
|
5 | ovnlerp.m | |
|
6 | nfv | |
|
7 | ssrab2 | |
|
8 | 5 7 | eqsstri | |
9 | 8 | a1i | |
10 | 1 3 5 | ovnpnfelsup | |
11 | 10 | ne0d | |
12 | 0red | |
|
13 | 1 3 5 | ovnsupge0 | |
14 | 0xr | |
|
15 | 14 | a1i | |
16 | pnfxr | |
|
17 | 16 | a1i | |
18 | ssel2 | |
|
19 | iccgelb | |
|
20 | 15 17 18 19 | syl3anc | |
21 | 20 | ralrimiva | |
22 | 13 21 | syl | |
23 | breq1 | |
|
24 | 23 | ralbidv | |
25 | 24 | rspcev | |
26 | 12 22 25 | syl2anc | |
27 | 6 9 11 26 4 | infrpge | |
28 | nfv | |
|
29 | simp3 | |
|
30 | 1 2 3 5 | ovnn0val | |
31 | 30 | eqcomd | |
32 | 31 | oveq1d | |
33 | 32 | 3ad2ant1 | |
34 | 29 33 | breqtrd | |
35 | 34 | 3exp | |
36 | 28 35 | reximdai | |
37 | 27 36 | mpd | |
38 | nfcv | |
|
39 | nfrab1 | |
|
40 | 5 39 | nfcxfr | |
41 | nfv | |
|
42 | nfv | |
|
43 | breq1 | |
|
44 | 38 40 41 42 43 | cbvrexfw | |
45 | 37 44 | sylib | |