Metamath Proof Explorer


Theorem ovnlerp

Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnlerp.x φXFin
ovnlerp.n0 φX
ovnlerp.a φAX
ovnlerp.e φE+
ovnlerp.m M=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
Assertion ovnlerp φzMzvoln*XA+𝑒E

Proof

Step Hyp Ref Expression
1 ovnlerp.x φXFin
2 ovnlerp.n0 φX
3 ovnlerp.a φAX
4 ovnlerp.e φE+
5 ovnlerp.m M=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
6 nfv xφ
7 ssrab2 z*|i2XAjkX.ijkz=sum^jkXvol.ijk*
8 5 7 eqsstri M*
9 8 a1i φM*
10 1 3 5 ovnpnfelsup φ+∞M
11 10 ne0d φM
12 0red φ0
13 1 3 5 ovnsupge0 φM0+∞
14 0xr 0*
15 14 a1i M0+∞yM0*
16 pnfxr +∞*
17 16 a1i M0+∞yM+∞*
18 ssel2 M0+∞yMy0+∞
19 iccgelb 0*+∞*y0+∞0y
20 15 17 18 19 syl3anc M0+∞yM0y
21 20 ralrimiva M0+∞yM0y
22 13 21 syl φyM0y
23 breq1 x=0xy0y
24 23 ralbidv x=0yMxyyM0y
25 24 rspcev 0yM0yxyMxy
26 12 22 25 syl2anc φxyMxy
27 6 9 11 26 4 infrpge φwMwsupM*<+𝑒E
28 nfv wφ
29 simp3 φwMwsupM*<+𝑒EwsupM*<+𝑒E
30 1 2 3 5 ovnn0val φvoln*XA=supM*<
31 30 eqcomd φsupM*<=voln*XA
32 31 oveq1d φsupM*<+𝑒E=voln*XA+𝑒E
33 32 3ad2ant1 φwMwsupM*<+𝑒EsupM*<+𝑒E=voln*XA+𝑒E
34 29 33 breqtrd φwMwsupM*<+𝑒Ewvoln*XA+𝑒E
35 34 3exp φwMwsupM*<+𝑒Ewvoln*XA+𝑒E
36 28 35 reximdai φwMwsupM*<+𝑒EwMwvoln*XA+𝑒E
37 27 36 mpd φwMwvoln*XA+𝑒E
38 nfcv _wM
39 nfrab1 _zz*|i2XAjkX.ijkz=sum^jkXvol.ijk
40 5 39 nfcxfr _zM
41 nfv zwvoln*XA+𝑒E
42 nfv wzvoln*XA+𝑒E
43 breq1 w=zwvoln*XA+𝑒Ezvoln*XA+𝑒E
44 38 40 41 42 43 cbvrexfw wMwvoln*XA+𝑒EzMzvoln*XA+𝑒E
45 37 44 sylib φzMzvoln*XA+𝑒E