Metamath Proof Explorer


Theorem ovnsubaddlem2

Description: ( voln*X ) is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsubaddlem2.x φXFin
ovnsubaddlem2.n0 φX
ovnsubaddlem2.a φA:𝒫X
ovnsubaddlem2.e φE+
ovnsubaddlem2.z Z=a𝒫Xz*|i2XajkX.ijkz=sum^jkXvol.ijk
ovnsubaddlem2.c C=a𝒫Xl2X|ajkX.ljk
ovnsubaddlem2.l L=h2XkXvol.hk
ovnsubaddlem2.d D=a𝒫Xe+iCa|sum^jLijvoln*Xa+𝑒e
Assertion ovnsubaddlem2 φvoln*XnAnsum^nvoln*XAn+𝑒E

Proof

Step Hyp Ref Expression
1 ovnsubaddlem2.x φXFin
2 ovnsubaddlem2.n0 φX
3 ovnsubaddlem2.a φA:𝒫X
4 ovnsubaddlem2.e φE+
5 ovnsubaddlem2.z Z=a𝒫Xz*|i2XajkX.ijkz=sum^jkXvol.ijk
6 ovnsubaddlem2.c C=a𝒫Xl2X|ajkX.ljk
7 ovnsubaddlem2.l L=h2XkXvol.hk
8 ovnsubaddlem2.d D=a𝒫Xe+iCa|sum^jLijvoln*Xa+𝑒e
9 fvex DAnE2nV
10 nnenom ω
11 9 10 axcc3 ggFnnDAnE2ngnDAnE2n
12 simprl φgFnnDAnE2ngnDAnE2ngFn
13 nfv nφ
14 nfra1 nnDAnE2ngnDAnE2n
15 13 14 nfan nφnDAnE2ngnDAnE2n
16 rspa nDAnE2ngnDAnE2nnDAnE2ngnDAnE2n
17 16 adantll φnDAnE2ngnDAnE2nnDAnE2ngnDAnE2n
18 1 adantr φnXFin
19 2 adantr φnX
20 3 adantr φnA:𝒫X
21 simpr φnn
22 20 21 ffvelcdmd φnAn𝒫X
23 elpwi An𝒫XAnX
24 22 23 syl φnAnX
25 4 adantr φnE+
26 nnnn0 nn0
27 2nn 2
28 27 a1i n02
29 id n0n0
30 nnexpcl 2n02n
31 28 29 30 syl2anc n02n
32 nnrp 2n2n+
33 31 32 syl n02n+
34 26 33 syl n2n+
35 34 adantl φn2n+
36 25 35 rpdivcld φnE2n+
37 18 19 24 36 6 7 8 ovncvrrp φniiDAnE2n
38 n0 DAnE2niiDAnE2n
39 37 38 sylibr φnDAnE2n
40 39 adantr φnDAnE2ngnDAnE2nDAnE2n
41 simpr φnDAnE2ngnDAnE2nDAnE2ngnDAnE2n
42 40 41 mpd φnDAnE2ngnDAnE2ngnDAnE2n
43 42 ex φnDAnE2ngnDAnE2ngnDAnE2n
44 43 adantlr φnDAnE2ngnDAnE2nnDAnE2ngnDAnE2ngnDAnE2n
45 17 44 mpd φnDAnE2ngnDAnE2nngnDAnE2n
46 45 ex φnDAnE2ngnDAnE2nngnDAnE2n
47 15 46 ralrimi φnDAnE2ngnDAnE2nngnDAnE2n
48 47 adantrl φgFnnDAnE2ngnDAnE2nngnDAnE2n
49 12 48 jca φgFnnDAnE2ngnDAnE2ngFnngnDAnE2n
50 49 ex φgFnnDAnE2ngnDAnE2ngFnngnDAnE2n
51 50 eximdv φggFnnDAnE2ngnDAnE2nggFnngnDAnE2n
52 11 51 mpi φggFnngnDAnE2n
53 simpl φgFnngnDAnE2nφ
54 simprl φgFnngnDAnE2ngFn
55 simprr φgFnngnDAnE2nngnDAnE2n
56 nnf1oxpnn ff:1-1 onto×
57 simpl1 φgFnngnDAnE2nf:1-1 onto×φ
58 simpl2 φgFnngnDAnE2nf:1-1 onto×gFn
59 fveq2 q=ngq=gn
60 2fveq3 q=nDAq=DAn
61 oveq2 q=n2q=2n
62 61 oveq2d q=nE2q=E2n
63 60 62 fveq12d q=nDAqE2q=DAnE2n
64 59 63 eleq12d q=ngqDAqE2qgnDAnE2n
65 64 cbvralvw qgqDAqE2qngnDAnE2n
66 65 biimpri ngnDAnE2nqgqDAqE2q
67 66 3ad2ant3 φgFnngnDAnE2nqgqDAqE2q
68 67 adantr φgFnngnDAnE2nf:1-1 onto×qgqDAqE2q
69 simpr φgFnngnDAnE2nf:1-1 onto×f:1-1 onto×
70 1 adantr φf:1-1 onto×XFin
71 70 3ad2antl1 φgFnqgqDAqE2qf:1-1 onto×XFin
72 2 adantr φf:1-1 onto×X
73 72 3ad2antl1 φgFnqgqDAqE2qf:1-1 onto×X
74 3 adantr φf:1-1 onto×A:𝒫X
75 74 3ad2antl1 φgFnqgqDAqE2qf:1-1 onto×A:𝒫X
76 4 adantr φf:1-1 onto×E+
77 76 3ad2antl1 φgFnqgqDAqE2qf:1-1 onto×E+
78 coeq2 h=i.h=.i
79 78 fveq1d h=i.hk=.ik
80 79 fveq2d h=ivol.hk=vol.ik
81 80 prodeq2ad h=ikXvol.hk=kXvol.ik
82 81 cbvmptv h2XkXvol.hk=i2XkXvol.ik
83 7 82 eqtri L=i2XkXvol.ik
84 65 biimpi qgqDAqE2qngnDAnE2n
85 84 3ad2ant3 φgFnqgqDAqE2qngnDAnE2n
86 85 ad2antrr φgFnqgqDAqE2qf:1-1 onto×nngnDAnE2n
87 simpr φgFnqgqDAqE2qf:1-1 onto×nn
88 rspa ngnDAnE2nngnDAnE2n
89 86 87 88 syl2anc φgFnqgqDAqE2qf:1-1 onto×ngnDAnE2n
90 simpr φgFnqgqDAqE2qf:1-1 onto×f:1-1 onto×
91 2fveq3 q=m1stfq=1stfm
92 91 fveq2d q=mg1stfq=g1stfm
93 2fveq3 q=m2ndfq=2ndfm
94 92 93 fveq12d q=mg1stfq2ndfq=g1stfm2ndfm
95 94 cbvmptv qg1stfq2ndfq=mg1stfm2ndfm
96 71 73 75 77 5 6 83 8 89 90 95 ovnsubaddlem1 φgFnqgqDAqE2qf:1-1 onto×voln*XnAnsum^nvoln*XAn+𝑒E
97 57 58 68 69 96 syl31anc φgFnngnDAnE2nf:1-1 onto×voln*XnAnsum^nvoln*XAn+𝑒E
98 97 ex φgFnngnDAnE2nf:1-1 onto×voln*XnAnsum^nvoln*XAn+𝑒E
99 98 exlimdv φgFnngnDAnE2nff:1-1 onto×voln*XnAnsum^nvoln*XAn+𝑒E
100 56 99 mpi φgFnngnDAnE2nvoln*XnAnsum^nvoln*XAn+𝑒E
101 53 54 55 100 syl3anc φgFnngnDAnE2nvoln*XnAnsum^nvoln*XAn+𝑒E
102 101 ex φgFnngnDAnE2nvoln*XnAnsum^nvoln*XAn+𝑒E
103 102 exlimdv φggFnngnDAnE2nvoln*XnAnsum^nvoln*XAn+𝑒E
104 52 103 mpd φvoln*XnAnsum^nvoln*XAn+𝑒E