Metamath Proof Explorer


Theorem ovnsubaddlem2

Description: ( voln*X ) is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsubaddlem2.x φ X Fin
ovnsubaddlem2.n0 φ X
ovnsubaddlem2.a φ A : 𝒫 X
ovnsubaddlem2.e φ E +
ovnsubaddlem2.z Z = a 𝒫 X z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k
ovnsubaddlem2.c C = a 𝒫 X l 2 X | a j k X . l j k
ovnsubaddlem2.l L = h 2 X k X vol . h k
ovnsubaddlem2.d D = a 𝒫 X e + i C a | sum^ j L i j voln* X a + 𝑒 e
Assertion ovnsubaddlem2 φ voln* X n A n sum^ n voln* X A n + 𝑒 E

Proof

Step Hyp Ref Expression
1 ovnsubaddlem2.x φ X Fin
2 ovnsubaddlem2.n0 φ X
3 ovnsubaddlem2.a φ A : 𝒫 X
4 ovnsubaddlem2.e φ E +
5 ovnsubaddlem2.z Z = a 𝒫 X z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k
6 ovnsubaddlem2.c C = a 𝒫 X l 2 X | a j k X . l j k
7 ovnsubaddlem2.l L = h 2 X k X vol . h k
8 ovnsubaddlem2.d D = a 𝒫 X e + i C a | sum^ j L i j voln* X a + 𝑒 e
9 fvex D A n E 2 n V
10 nnenom ω
11 9 10 axcc3 g g Fn n D A n E 2 n g n D A n E 2 n
12 simprl φ g Fn n D A n E 2 n g n D A n E 2 n g Fn
13 nfv n φ
14 nfra1 n n D A n E 2 n g n D A n E 2 n
15 13 14 nfan n φ n D A n E 2 n g n D A n E 2 n
16 rspa n D A n E 2 n g n D A n E 2 n n D A n E 2 n g n D A n E 2 n
17 16 adantll φ n D A n E 2 n g n D A n E 2 n n D A n E 2 n g n D A n E 2 n
18 1 adantr φ n X Fin
19 2 adantr φ n X
20 3 adantr φ n A : 𝒫 X
21 simpr φ n n
22 20 21 ffvelrnd φ n A n 𝒫 X
23 elpwi A n 𝒫 X A n X
24 22 23 syl φ n A n X
25 4 adantr φ n E +
26 nnnn0 n n 0
27 2nn 2
28 27 a1i n 0 2
29 id n 0 n 0
30 nnexpcl 2 n 0 2 n
31 28 29 30 syl2anc n 0 2 n
32 nnrp 2 n 2 n +
33 31 32 syl n 0 2 n +
34 26 33 syl n 2 n +
35 34 adantl φ n 2 n +
36 25 35 rpdivcld φ n E 2 n +
37 18 19 24 36 6 7 8 ovncvrrp φ n i i D A n E 2 n
38 n0 D A n E 2 n i i D A n E 2 n
39 37 38 sylibr φ n D A n E 2 n
40 39 adantr φ n D A n E 2 n g n D A n E 2 n D A n E 2 n
41 simpr φ n D A n E 2 n g n D A n E 2 n D A n E 2 n g n D A n E 2 n
42 40 41 mpd φ n D A n E 2 n g n D A n E 2 n g n D A n E 2 n
43 42 ex φ n D A n E 2 n g n D A n E 2 n g n D A n E 2 n
44 43 adantlr φ n D A n E 2 n g n D A n E 2 n n D A n E 2 n g n D A n E 2 n g n D A n E 2 n
45 17 44 mpd φ n D A n E 2 n g n D A n E 2 n n g n D A n E 2 n
46 45 ex φ n D A n E 2 n g n D A n E 2 n n g n D A n E 2 n
47 15 46 ralrimi φ n D A n E 2 n g n D A n E 2 n n g n D A n E 2 n
48 47 adantrl φ g Fn n D A n E 2 n g n D A n E 2 n n g n D A n E 2 n
49 12 48 jca φ g Fn n D A n E 2 n g n D A n E 2 n g Fn n g n D A n E 2 n
50 49 ex φ g Fn n D A n E 2 n g n D A n E 2 n g Fn n g n D A n E 2 n
51 50 eximdv φ g g Fn n D A n E 2 n g n D A n E 2 n g g Fn n g n D A n E 2 n
52 11 51 mpi φ g g Fn n g n D A n E 2 n
53 simpl φ g Fn n g n D A n E 2 n φ
54 simprl φ g Fn n g n D A n E 2 n g Fn
55 simprr φ g Fn n g n D A n E 2 n n g n D A n E 2 n
56 nnf1oxpnn f f : 1-1 onto ×
57 simpl1 φ g Fn n g n D A n E 2 n f : 1-1 onto × φ
58 simpl2 φ g Fn n g n D A n E 2 n f : 1-1 onto × g Fn
59 fveq2 q = n g q = g n
60 2fveq3 q = n D A q = D A n
61 oveq2 q = n 2 q = 2 n
62 61 oveq2d q = n E 2 q = E 2 n
63 60 62 fveq12d q = n D A q E 2 q = D A n E 2 n
64 59 63 eleq12d q = n g q D A q E 2 q g n D A n E 2 n
65 64 cbvralvw q g q D A q E 2 q n g n D A n E 2 n
66 65 biimpri n g n D A n E 2 n q g q D A q E 2 q
67 66 3ad2ant3 φ g Fn n g n D A n E 2 n q g q D A q E 2 q
68 67 adantr φ g Fn n g n D A n E 2 n f : 1-1 onto × q g q D A q E 2 q
69 simpr φ g Fn n g n D A n E 2 n f : 1-1 onto × f : 1-1 onto ×
70 1 adantr φ f : 1-1 onto × X Fin
71 70 3ad2antl1 φ g Fn q g q D A q E 2 q f : 1-1 onto × X Fin
72 2 adantr φ f : 1-1 onto × X
73 72 3ad2antl1 φ g Fn q g q D A q E 2 q f : 1-1 onto × X
74 3 adantr φ f : 1-1 onto × A : 𝒫 X
75 74 3ad2antl1 φ g Fn q g q D A q E 2 q f : 1-1 onto × A : 𝒫 X
76 4 adantr φ f : 1-1 onto × E +
77 76 3ad2antl1 φ g Fn q g q D A q E 2 q f : 1-1 onto × E +
78 coeq2 h = i . h = . i
79 78 fveq1d h = i . h k = . i k
80 79 fveq2d h = i vol . h k = vol . i k
81 80 prodeq2ad h = i k X vol . h k = k X vol . i k
82 81 cbvmptv h 2 X k X vol . h k = i 2 X k X vol . i k
83 7 82 eqtri L = i 2 X k X vol . i k
84 65 biimpi q g q D A q E 2 q n g n D A n E 2 n
85 84 3ad2ant3 φ g Fn q g q D A q E 2 q n g n D A n E 2 n
86 85 ad2antrr φ g Fn q g q D A q E 2 q f : 1-1 onto × n n g n D A n E 2 n
87 simpr φ g Fn q g q D A q E 2 q f : 1-1 onto × n n
88 rspa n g n D A n E 2 n n g n D A n E 2 n
89 86 87 88 syl2anc φ g Fn q g q D A q E 2 q f : 1-1 onto × n g n D A n E 2 n
90 simpr φ g Fn q g q D A q E 2 q f : 1-1 onto × f : 1-1 onto ×
91 2fveq3 q = m 1 st f q = 1 st f m
92 91 fveq2d q = m g 1 st f q = g 1 st f m
93 2fveq3 q = m 2 nd f q = 2 nd f m
94 92 93 fveq12d q = m g 1 st f q 2 nd f q = g 1 st f m 2 nd f m
95 94 cbvmptv q g 1 st f q 2 nd f q = m g 1 st f m 2 nd f m
96 71 73 75 77 5 6 83 8 89 90 95 ovnsubaddlem1 φ g Fn q g q D A q E 2 q f : 1-1 onto × voln* X n A n sum^ n voln* X A n + 𝑒 E
97 57 58 68 69 96 syl31anc φ g Fn n g n D A n E 2 n f : 1-1 onto × voln* X n A n sum^ n voln* X A n + 𝑒 E
98 97 ex φ g Fn n g n D A n E 2 n f : 1-1 onto × voln* X n A n sum^ n voln* X A n + 𝑒 E
99 98 exlimdv φ g Fn n g n D A n E 2 n f f : 1-1 onto × voln* X n A n sum^ n voln* X A n + 𝑒 E
100 56 99 mpi φ g Fn n g n D A n E 2 n voln* X n A n sum^ n voln* X A n + 𝑒 E
101 53 54 55 100 syl3anc φ g Fn n g n D A n E 2 n voln* X n A n sum^ n voln* X A n + 𝑒 E
102 101 ex φ g Fn n g n D A n E 2 n voln* X n A n sum^ n voln* X A n + 𝑒 E
103 102 exlimdv φ g g Fn n g n D A n E 2 n voln* X n A n sum^ n voln* X A n + 𝑒 E
104 52 103 mpd φ voln* X n A n sum^ n voln* X A n + 𝑒 E