Metamath Proof Explorer


Theorem ovolfioo

Description: Unpack the interval covering property of the outer measure definition. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion ovolfioo AF:2Aran.FzAn1stFn<zz<2ndFn

Proof

Step Hyp Ref Expression
1 ioof .:*×*𝒫
2 inss2 22
3 rexpssxrxp 2*×*
4 2 3 sstri 2*×*
5 fss F:22*×*F:*×*
6 4 5 mpan2 F:2F:*×*
7 fco .:*×*𝒫F:*×*.F:𝒫
8 1 6 7 sylancr F:2.F:𝒫
9 ffn .F:𝒫.FFn
10 fniunfv .FFnn.Fn=ran.F
11 8 9 10 3syl F:2n.Fn=ran.F
12 11 sseq2d F:2An.FnAran.F
13 12 adantl AF:2An.FnAran.F
14 dfss3 An.FnzAzn.Fn
15 ssel2 AzAz
16 eliun zn.Fnnz.Fn
17 rexr zz*
18 17 ad2antrr zF:2nz*
19 fvco3 F:2n.Fn=.Fn
20 ffvelcdm F:2nFn2
21 20 elin2d F:2nFn2
22 1st2nd2 Fn2Fn=1stFn2ndFn
23 21 22 syl F:2nFn=1stFn2ndFn
24 23 fveq2d F:2n.Fn=.1stFn2ndFn
25 df-ov 1stFn2ndFn=.1stFn2ndFn
26 24 25 eqtr4di F:2n.Fn=1stFn2ndFn
27 19 26 eqtrd F:2n.Fn=1stFn2ndFn
28 27 eleq2d F:2nz.Fnz1stFn2ndFn
29 ovolfcl F:2n1stFn2ndFn1stFn2ndFn
30 rexr 1stFn1stFn*
31 rexr 2ndFn2ndFn*
32 elioo1 1stFn*2ndFn*z1stFn2ndFnz*1stFn<zz<2ndFn
33 30 31 32 syl2an 1stFn2ndFnz1stFn2ndFnz*1stFn<zz<2ndFn
34 3anass z*1stFn<zz<2ndFnz*1stFn<zz<2ndFn
35 33 34 bitrdi 1stFn2ndFnz1stFn2ndFnz*1stFn<zz<2ndFn
36 35 3adant3 1stFn2ndFn1stFn2ndFnz1stFn2ndFnz*1stFn<zz<2ndFn
37 29 36 syl F:2nz1stFn2ndFnz*1stFn<zz<2ndFn
38 28 37 bitrd F:2nz.Fnz*1stFn<zz<2ndFn
39 38 adantll zF:2nz.Fnz*1stFn<zz<2ndFn
40 18 39 mpbirand zF:2nz.Fn1stFn<zz<2ndFn
41 40 rexbidva zF:2nz.Fnn1stFn<zz<2ndFn
42 16 41 bitrid zF:2zn.Fnn1stFn<zz<2ndFn
43 15 42 sylan AzAF:2zn.Fnn1stFn<zz<2ndFn
44 43 an32s AF:2zAzn.Fnn1stFn<zz<2ndFn
45 44 ralbidva AF:2zAzn.FnzAn1stFn<zz<2ndFn
46 14 45 bitrid AF:2An.FnzAn1stFn<zz<2ndFn
47 13 46 bitr3d AF:2Aran.FzAn1stFn<zz<2ndFn