Metamath Proof Explorer


Theorem ovolicc2lem2

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 φA
ovolicc.2 φB
ovolicc.3 φAB
ovolicc2.4 S=seq1+absF
ovolicc2.5 φF:2
ovolicc2.6 φU𝒫ran.FFin
ovolicc2.7 φABU
ovolicc2.8 φG:U
ovolicc2.9 φtU.FGt=t
ovolicc2.10 T=uU|uAB
ovolicc2.11 φH:TT
ovolicc2.12 φtTif2ndFGtB2ndFGtBHt
ovolicc2.13 φAC
ovolicc2.14 φCT
ovolicc2.15 K=seq1H1st×C
ovolicc2.16 W=n|BKn
Assertion ovolicc2lem2 φN¬NW2ndFGKNB

Proof

Step Hyp Ref Expression
1 ovolicc.1 φA
2 ovolicc.2 φB
3 ovolicc.3 φAB
4 ovolicc2.4 S=seq1+absF
5 ovolicc2.5 φF:2
6 ovolicc2.6 φU𝒫ran.FFin
7 ovolicc2.7 φABU
8 ovolicc2.8 φG:U
9 ovolicc2.9 φtU.FGt=t
10 ovolicc2.10 T=uU|uAB
11 ovolicc2.11 φH:TT
12 ovolicc2.12 φtTif2ndFGtB2ndFGtBHt
13 ovolicc2.13 φAC
14 ovolicc2.14 φCT
15 ovolicc2.15 K=seq1H1st×C
16 ovolicc2.16 W=n|BKn
17 2 adantr φNB
18 inss2 22
19 fss F:222F:2
20 5 18 19 sylancl φF:2
21 20 adantr φNF:2
22 8 adantr φNG:U
23 nnuz =1
24 1zzd φ1
25 23 15 24 14 11 algrf φK:T
26 25 ffvelcdmda φNKNT
27 ineq1 u=KNuAB=KNAB
28 27 neeq1d u=KNuABKNAB
29 28 10 elrab2 KNTKNUKNAB
30 26 29 sylib φNKNUKNAB
31 30 simpld φNKNU
32 22 31 ffvelcdmd φNGKN
33 21 32 ffvelcdmd φNFGKN2
34 xp2nd FGKN22ndFGKN
35 33 34 syl φN2ndFGKN
36 17 35 ltnled φNB<2ndFGKN¬2ndFGKNB
37 simprl φNB<2ndFGKNN
38 2 adantr φNB<2ndFGKNB
39 30 adantrr φNB<2ndFGKNKNUKNAB
40 39 simprd φNB<2ndFGKNKNAB
41 n0 KNABxxKNAB
42 40 41 sylib φNB<2ndFGKNxxKNAB
43 xp1st FGKN21stFGKN
44 33 43 syl φN1stFGKN
45 44 adantrr φNB<2ndFGKN1stFGKN
46 45 adantr φNB<2ndFGKNxKNAB1stFGKN
47 simpr φNB<2ndFGKNxKNABxKNAB
48 elin xKNABxKNxAB
49 47 48 sylib φNB<2ndFGKNxKNABxKNxAB
50 49 simprd φNB<2ndFGKNxKNABxAB
51 elicc2 ABxABxAxxB
52 1 2 51 syl2anc φxABxAxxB
53 52 ad2antrr φNB<2ndFGKNxKNABxABxAxxB
54 50 53 mpbid φNB<2ndFGKNxKNABxAxxB
55 54 simp1d φNB<2ndFGKNxKNABx
56 2 ad2antrr φNB<2ndFGKNxKNABB
57 49 simpld φNB<2ndFGKNxKNABxKN
58 39 simpld φNB<2ndFGKNKNU
59 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φKNUxKNx1stFGKN<xx<2ndFGKN
60 58 59 syldan φNB<2ndFGKNxKNx1stFGKN<xx<2ndFGKN
61 60 adantr φNB<2ndFGKNxKNABxKNx1stFGKN<xx<2ndFGKN
62 57 61 mpbid φNB<2ndFGKNxKNABx1stFGKN<xx<2ndFGKN
63 62 simp2d φNB<2ndFGKNxKNAB1stFGKN<x
64 54 simp3d φNB<2ndFGKNxKNABxB
65 46 55 56 63 64 ltletrd φNB<2ndFGKNxKNAB1stFGKN<B
66 42 65 exlimddv φNB<2ndFGKN1stFGKN<B
67 simprr φNB<2ndFGKNB<2ndFGKN
68 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φKNUBKNB1stFGKN<BB<2ndFGKN
69 58 68 syldan φNB<2ndFGKNBKNB1stFGKN<BB<2ndFGKN
70 38 66 67 69 mpbir3and φNB<2ndFGKNBKN
71 fveq2 n=NKn=KN
72 71 eleq2d n=NBKnBKN
73 72 16 elrab2 NWNBKN
74 37 70 73 sylanbrc φNB<2ndFGKNNW
75 74 expr φNB<2ndFGKNNW
76 36 75 sylbird φN¬2ndFGKNBNW
77 76 con1d φN¬NW2ndFGKNB
78 77 impr φN¬NW2ndFGKNB