Metamath Proof Explorer


Theorem ovolicc2lem2

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 φ A
ovolicc.2 φ B
ovolicc.3 φ A B
ovolicc2.4 S = seq 1 + abs F
ovolicc2.5 φ F : 2
ovolicc2.6 φ U 𝒫 ran . F Fin
ovolicc2.7 φ A B U
ovolicc2.8 φ G : U
ovolicc2.9 φ t U . F G t = t
ovolicc2.10 T = u U | u A B
ovolicc2.11 φ H : T T
ovolicc2.12 φ t T if 2 nd F G t B 2 nd F G t B H t
ovolicc2.13 φ A C
ovolicc2.14 φ C T
ovolicc2.15 K = seq 1 H 1 st × C
ovolicc2.16 W = n | B K n
Assertion ovolicc2lem2 φ N ¬ N W 2 nd F G K N B

Proof

Step Hyp Ref Expression
1 ovolicc.1 φ A
2 ovolicc.2 φ B
3 ovolicc.3 φ A B
4 ovolicc2.4 S = seq 1 + abs F
5 ovolicc2.5 φ F : 2
6 ovolicc2.6 φ U 𝒫 ran . F Fin
7 ovolicc2.7 φ A B U
8 ovolicc2.8 φ G : U
9 ovolicc2.9 φ t U . F G t = t
10 ovolicc2.10 T = u U | u A B
11 ovolicc2.11 φ H : T T
12 ovolicc2.12 φ t T if 2 nd F G t B 2 nd F G t B H t
13 ovolicc2.13 φ A C
14 ovolicc2.14 φ C T
15 ovolicc2.15 K = seq 1 H 1 st × C
16 ovolicc2.16 W = n | B K n
17 2 adantr φ N B
18 inss2 2 2
19 fss F : 2 2 2 F : 2
20 5 18 19 sylancl φ F : 2
21 20 adantr φ N F : 2
22 8 adantr φ N G : U
23 nnuz = 1
24 1zzd φ 1
25 23 15 24 14 11 algrf φ K : T
26 25 ffvelrnda φ N K N T
27 ineq1 u = K N u A B = K N A B
28 27 neeq1d u = K N u A B K N A B
29 28 10 elrab2 K N T K N U K N A B
30 26 29 sylib φ N K N U K N A B
31 30 simpld φ N K N U
32 22 31 ffvelrnd φ N G K N
33 21 32 ffvelrnd φ N F G K N 2
34 xp2nd F G K N 2 2 nd F G K N
35 33 34 syl φ N 2 nd F G K N
36 17 35 ltnled φ N B < 2 nd F G K N ¬ 2 nd F G K N B
37 simprl φ N B < 2 nd F G K N N
38 2 adantr φ N B < 2 nd F G K N B
39 30 adantrr φ N B < 2 nd F G K N K N U K N A B
40 39 simprd φ N B < 2 nd F G K N K N A B
41 n0 K N A B x x K N A B
42 40 41 sylib φ N B < 2 nd F G K N x x K N A B
43 xp1st F G K N 2 1 st F G K N
44 33 43 syl φ N 1 st F G K N
45 44 adantrr φ N B < 2 nd F G K N 1 st F G K N
46 45 adantr φ N B < 2 nd F G K N x K N A B 1 st F G K N
47 simpr φ N B < 2 nd F G K N x K N A B x K N A B
48 elin x K N A B x K N x A B
49 47 48 sylib φ N B < 2 nd F G K N x K N A B x K N x A B
50 49 simprd φ N B < 2 nd F G K N x K N A B x A B
51 elicc2 A B x A B x A x x B
52 1 2 51 syl2anc φ x A B x A x x B
53 52 ad2antrr φ N B < 2 nd F G K N x K N A B x A B x A x x B
54 50 53 mpbid φ N B < 2 nd F G K N x K N A B x A x x B
55 54 simp1d φ N B < 2 nd F G K N x K N A B x
56 2 ad2antrr φ N B < 2 nd F G K N x K N A B B
57 49 simpld φ N B < 2 nd F G K N x K N A B x K N
58 39 simpld φ N B < 2 nd F G K N K N U
59 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φ K N U x K N x 1 st F G K N < x x < 2 nd F G K N
60 58 59 syldan φ N B < 2 nd F G K N x K N x 1 st F G K N < x x < 2 nd F G K N
61 60 adantr φ N B < 2 nd F G K N x K N A B x K N x 1 st F G K N < x x < 2 nd F G K N
62 57 61 mpbid φ N B < 2 nd F G K N x K N A B x 1 st F G K N < x x < 2 nd F G K N
63 62 simp2d φ N B < 2 nd F G K N x K N A B 1 st F G K N < x
64 54 simp3d φ N B < 2 nd F G K N x K N A B x B
65 46 55 56 63 64 ltletrd φ N B < 2 nd F G K N x K N A B 1 st F G K N < B
66 42 65 exlimddv φ N B < 2 nd F G K N 1 st F G K N < B
67 simprr φ N B < 2 nd F G K N B < 2 nd F G K N
68 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φ K N U B K N B 1 st F G K N < B B < 2 nd F G K N
69 58 68 syldan φ N B < 2 nd F G K N B K N B 1 st F G K N < B B < 2 nd F G K N
70 38 66 67 69 mpbir3and φ N B < 2 nd F G K N B K N
71 fveq2 n = N K n = K N
72 71 eleq2d n = N B K n B K N
73 72 16 elrab2 N W N B K N
74 37 70 73 sylanbrc φ N B < 2 nd F G K N N W
75 74 expr φ N B < 2 nd F G K N N W
76 36 75 sylbird φ N ¬ 2 nd F G K N B N W
77 76 con1d φ N ¬ N W 2 nd F G K N B
78 77 impr φ N ¬ N W 2 nd F G K N B