Metamath Proof Explorer


Theorem ovolscalem2

Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)

Ref Expression
Hypotheses ovolsca.1 φA
ovolsca.2 φC+
ovolsca.3 φB=x|CxA
ovolsca.4 φvol*A
Assertion ovolscalem2 φvol*Bvol*AC

Proof

Step Hyp Ref Expression
1 ovolsca.1 φA
2 ovolsca.2 φC+
3 ovolsca.3 φB=x|CxA
4 ovolsca.4 φvol*A
5 1 adantr φy+A
6 4 adantr φy+vol*A
7 rpmulcl C+y+Cy+
8 2 7 sylan φy+Cy+
9 eqid seq1+absf=seq1+absf
10 9 ovolgelb Avol*ACy+f2Aran.fsupranseq1+absf*<vol*A+Cy
11 5 6 8 10 syl3anc φy+f2Aran.fsupranseq1+absf*<vol*A+Cy
12 1 ad2antrr φy+f2Aran.fsupranseq1+absf*<vol*A+CyA
13 2 ad2antrr φy+f2Aran.fsupranseq1+absf*<vol*A+CyC+
14 3 ad2antrr φy+f2Aran.fsupranseq1+absf*<vol*A+CyB=x|CxA
15 4 ad2antrr φy+f2Aran.fsupranseq1+absf*<vol*A+Cyvol*A
16 2fveq3 m=n1stfm=1stfn
17 16 oveq1d m=n1stfmC=1stfnC
18 2fveq3 m=n2ndfm=2ndfn
19 18 oveq1d m=n2ndfmC=2ndfnC
20 17 19 opeq12d m=n1stfmC2ndfmC=1stfnC2ndfnC
21 20 cbvmptv m1stfmC2ndfmC=n1stfnC2ndfnC
22 elmapi f2f:2
23 22 ad2antrl φy+f2Aran.fsupranseq1+absf*<vol*A+Cyf:2
24 simprrl φy+f2Aran.fsupranseq1+absf*<vol*A+CyAran.f
25 simplr φy+f2Aran.fsupranseq1+absf*<vol*A+Cyy+
26 simprrr φy+f2Aran.fsupranseq1+absf*<vol*A+Cysupranseq1+absf*<vol*A+Cy
27 12 13 14 15 9 21 23 24 25 26 ovolscalem1 φy+f2Aran.fsupranseq1+absf*<vol*A+Cyvol*Bvol*AC+y
28 11 27 rexlimddv φy+vol*Bvol*AC+y
29 28 ralrimiva φy+vol*Bvol*AC+y
30 ssrab2 x|CxA
31 3 30 eqsstrdi φB
32 ovolcl Bvol*B*
33 31 32 syl φvol*B*
34 4 2 rerpdivcld φvol*AC
35 xralrple vol*B*vol*ACvol*Bvol*ACy+vol*Bvol*AC+y
36 33 34 35 syl2anc φvol*Bvol*ACy+vol*Bvol*AC+y
37 29 36 mpbird φvol*Bvol*AC