Metamath Proof Explorer


Theorem ovolscalem1

Description: Lemma for ovolsca . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses ovolsca.1 φA
ovolsca.2 φC+
ovolsca.3 φB=x|CxA
ovolsca.4 φvol*A
ovolsca.5 S=seq1+absF
ovolsca.6 G=n1stFnC2ndFnC
ovolsca.7 φF:2
ovolsca.8 φAran.F
ovolsca.9 φR+
ovolsca.10 φsupranS*<vol*A+CR
Assertion ovolscalem1 φvol*Bvol*AC+R

Proof

Step Hyp Ref Expression
1 ovolsca.1 φA
2 ovolsca.2 φC+
3 ovolsca.3 φB=x|CxA
4 ovolsca.4 φvol*A
5 ovolsca.5 S=seq1+absF
6 ovolsca.6 G=n1stFnC2ndFnC
7 ovolsca.7 φF:2
8 ovolsca.8 φAran.F
9 ovolsca.9 φR+
10 ovolsca.10 φsupranS*<vol*A+CR
11 ssrab2 x|CxA
12 3 11 eqsstrdi φB
13 ovolcl Bvol*B*
14 12 13 syl φvol*B*
15 ovolfcl F:2n1stFn2ndFn1stFn2ndFn
16 7 15 sylan φn1stFn2ndFn1stFn2ndFn
17 16 simp3d φn1stFn2ndFn
18 16 simp1d φn1stFn
19 16 simp2d φn2ndFn
20 2 rpregt0d φC0<C
21 20 adantr φnC0<C
22 lediv1 1stFn2ndFnC0<C1stFn2ndFn1stFnC2ndFnC
23 18 19 21 22 syl3anc φn1stFn2ndFn1stFnC2ndFnC
24 17 23 mpbid φn1stFnC2ndFnC
25 df-br 1stFnC2ndFnC1stFnC2ndFnC
26 24 25 sylib φn1stFnC2ndFnC
27 2 adantr φnC+
28 18 27 rerpdivcld φn1stFnC
29 19 27 rerpdivcld φn2ndFnC
30 28 29 opelxpd φn1stFnC2ndFnC2
31 26 30 elind φn1stFnC2ndFnC2
32 31 6 fmptd φG:2
33 eqid absG=absG
34 eqid seq1+absG=seq1+absG
35 33 34 ovolsf G:2seq1+absG:0+∞
36 32 35 syl φseq1+absG:0+∞
37 36 frnd φranseq1+absG0+∞
38 icossxr 0+∞*
39 37 38 sstrdi φranseq1+absG*
40 supxrcl ranseq1+absG*supranseq1+absG*<*
41 39 40 syl φsupranseq1+absG*<*
42 4 2 rerpdivcld φvol*AC
43 9 rpred φR
44 42 43 readdcld φvol*AC+R
45 44 rexrd φvol*AC+R*
46 3 eleq2d φyByx|CxA
47 oveq2 x=yCx=Cy
48 47 eleq1d x=yCxACyA
49 48 elrab yx|CxAyCyA
50 46 49 bitrdi φyByCyA
51 breq2 x=Cy1stFn<x1stFn<Cy
52 breq1 x=Cyx<2ndFnCy<2ndFn
53 51 52 anbi12d x=Cy1stFn<xx<2ndFn1stFn<CyCy<2ndFn
54 53 rexbidv x=Cyn1stFn<xx<2ndFnn1stFn<CyCy<2ndFn
55 ovolfioo AF:2Aran.FxAn1stFn<xx<2ndFn
56 1 7 55 syl2anc φAran.FxAn1stFn<xx<2ndFn
57 8 56 mpbid φxAn1stFn<xx<2ndFn
58 57 adantr φyCyAxAn1stFn<xx<2ndFn
59 simprr φyCyACyA
60 54 58 59 rspcdva φyCyAn1stFn<CyCy<2ndFn
61 opex 1stFnC2ndFnCV
62 6 fvmpt2 n1stFnC2ndFnCVGn=1stFnC2ndFnC
63 61 62 mpan2 nGn=1stFnC2ndFnC
64 63 fveq2d n1stGn=1st1stFnC2ndFnC
65 ovex 1stFnCV
66 ovex 2ndFnCV
67 65 66 op1st 1st1stFnC2ndFnC=1stFnC
68 64 67 eqtrdi n1stGn=1stFnC
69 68 adantl φyCyAn1stGn=1stFnC
70 69 breq1d φyCyAn1stGn<y1stFnC<y
71 18 adantlr φyCyAn1stFn
72 simplrl φyCyAny
73 21 adantlr φyCyAnC0<C
74 ltdivmul 1stFnyC0<C1stFnC<y1stFn<Cy
75 71 72 73 74 syl3anc φyCyAn1stFnC<y1stFn<Cy
76 70 75 bitr2d φyCyAn1stFn<Cy1stGn<y
77 19 adantlr φyCyAn2ndFn
78 ltmuldiv2 y2ndFnC0<CCy<2ndFny<2ndFnC
79 72 77 73 78 syl3anc φyCyAnCy<2ndFny<2ndFnC
80 63 fveq2d n2ndGn=2nd1stFnC2ndFnC
81 65 66 op2nd 2nd1stFnC2ndFnC=2ndFnC
82 80 81 eqtrdi n2ndGn=2ndFnC
83 82 adantl φyCyAn2ndGn=2ndFnC
84 83 breq2d φyCyAny<2ndGny<2ndFnC
85 79 84 bitr4d φyCyAnCy<2ndFny<2ndGn
86 76 85 anbi12d φyCyAn1stFn<CyCy<2ndFn1stGn<yy<2ndGn
87 86 rexbidva φyCyAn1stFn<CyCy<2ndFnn1stGn<yy<2ndGn
88 60 87 mpbid φyCyAn1stGn<yy<2ndGn
89 88 ex φyCyAn1stGn<yy<2ndGn
90 50 89 sylbid φyBn1stGn<yy<2ndGn
91 90 ralrimiv φyBn1stGn<yy<2ndGn
92 ovolfioo BG:2Bran.GyBn1stGn<yy<2ndGn
93 12 32 92 syl2anc φBran.GyBn1stGn<yy<2ndGn
94 91 93 mpbird φBran.G
95 34 ovollb G:2Bran.Gvol*Bsupranseq1+absG*<
96 32 94 95 syl2anc φvol*Bsupranseq1+absG*<
97 fzfid φk1kFin
98 2 rpcnd φC
99 98 adantr φkC
100 simpl φkφ
101 elfznn n1kn
102 19 18 resubcld φn2ndFn1stFn
103 100 101 102 syl2an φkn1k2ndFn1stFn
104 103 recnd φkn1k2ndFn1stFn
105 2 rpne0d φC0
106 105 adantr φkC0
107 97 99 104 106 fsumdivc φkn=1k2ndFn1stFnC=n=1k2ndFn1stFnC
108 82 68 oveq12d n2ndGn1stGn=2ndFnC1stFnC
109 108 adantl φn2ndGn1stGn=2ndFnC1stFnC
110 33 ovolfsval G:2nabsGn=2ndGn1stGn
111 32 110 sylan φnabsGn=2ndGn1stGn
112 19 recnd φn2ndFn
113 18 recnd φn1stFn
114 2 rpcnne0d φCC0
115 114 adantr φnCC0
116 divsubdir 2ndFn1stFnCC02ndFn1stFnC=2ndFnC1stFnC
117 112 113 115 116 syl3anc φn2ndFn1stFnC=2ndFnC1stFnC
118 109 111 117 3eqtr4d φnabsGn=2ndFn1stFnC
119 100 101 118 syl2an φkn1kabsGn=2ndFn1stFnC
120 simpr φkk
121 nnuz =1
122 120 121 eleqtrdi φkk1
123 102 27 rerpdivcld φn2ndFn1stFnC
124 123 recnd φn2ndFn1stFnC
125 100 101 124 syl2an φkn1k2ndFn1stFnC
126 119 122 125 fsumser φkn=1k2ndFn1stFnC=seq1+absGk
127 107 126 eqtrd φkn=1k2ndFn1stFnC=seq1+absGk
128 eqid absF=absF
129 128 5 ovolsf F:2S:0+∞
130 7 129 syl φS:0+∞
131 130 frnd φranS0+∞
132 131 38 sstrdi φranS*
133 2 9 rpmulcld φCR+
134 133 rpred φCR
135 4 134 readdcld φvol*A+CR
136 135 rexrd φvol*A+CR*
137 supxrleub ranS*vol*A+CR*supranS*<vol*A+CRxranSxvol*A+CR
138 132 136 137 syl2anc φsupranS*<vol*A+CRxranSxvol*A+CR
139 10 138 mpbid φxranSxvol*A+CR
140 130 ffnd φSFn
141 breq1 x=Skxvol*A+CRSkvol*A+CR
142 141 ralrn SFnxranSxvol*A+CRkSkvol*A+CR
143 140 142 syl φxranSxvol*A+CRkSkvol*A+CR
144 139 143 mpbid φkSkvol*A+CR
145 144 r19.21bi φkSkvol*A+CR
146 7 adantr φkF:2
147 128 ovolfsval F:2nabsFn=2ndFn1stFn
148 146 101 147 syl2an φkn1kabsFn=2ndFn1stFn
149 148 122 104 fsumser φkn=1k2ndFn1stFn=seq1+absFk
150 5 fveq1i Sk=seq1+absFk
151 149 150 eqtr4di φkn=1k2ndFn1stFn=Sk
152 42 recnd φvol*AC
153 9 rpcnd φR
154 98 152 153 adddid φCvol*AC+R=Cvol*AC+CR
155 4 recnd φvol*A
156 155 98 105 divcan2d φCvol*AC=vol*A
157 156 oveq1d φCvol*AC+CR=vol*A+CR
158 154 157 eqtrd φCvol*AC+R=vol*A+CR
159 158 adantr φkCvol*AC+R=vol*A+CR
160 145 151 159 3brtr4d φkn=1k2ndFn1stFnCvol*AC+R
161 97 103 fsumrecl φkn=1k2ndFn1stFn
162 44 adantr φkvol*AC+R
163 20 adantr φkC0<C
164 ledivmul n=1k2ndFn1stFnvol*AC+RC0<Cn=1k2ndFn1stFnCvol*AC+Rn=1k2ndFn1stFnCvol*AC+R
165 161 162 163 164 syl3anc φkn=1k2ndFn1stFnCvol*AC+Rn=1k2ndFn1stFnCvol*AC+R
166 160 165 mpbird φkn=1k2ndFn1stFnCvol*AC+R
167 127 166 eqbrtrrd φkseq1+absGkvol*AC+R
168 167 ralrimiva φkseq1+absGkvol*AC+R
169 36 ffnd φseq1+absGFn
170 breq1 y=seq1+absGkyvol*AC+Rseq1+absGkvol*AC+R
171 170 ralrn seq1+absGFnyranseq1+absGyvol*AC+Rkseq1+absGkvol*AC+R
172 169 171 syl φyranseq1+absGyvol*AC+Rkseq1+absGkvol*AC+R
173 168 172 mpbird φyranseq1+absGyvol*AC+R
174 supxrleub ranseq1+absG*vol*AC+R*supranseq1+absG*<vol*AC+Ryranseq1+absGyvol*AC+R
175 39 45 174 syl2anc φsupranseq1+absG*<vol*AC+Ryranseq1+absGyvol*AC+R
176 173 175 mpbird φsupranseq1+absG*<vol*AC+R
177 14 41 45 96 176 xrletrd φvol*Bvol*AC+R