| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolsca.1 |
|- ( ph -> A C_ RR ) |
| 2 |
|
ovolsca.2 |
|- ( ph -> C e. RR+ ) |
| 3 |
|
ovolsca.3 |
|- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
| 4 |
|
ovolsca.4 |
|- ( ph -> ( vol* ` A ) e. RR ) |
| 5 |
|
ovolsca.5 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
| 6 |
|
ovolsca.6 |
|- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) |
| 7 |
|
ovolsca.7 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 8 |
|
ovolsca.8 |
|- ( ph -> A C_ U. ran ( (,) o. F ) ) |
| 9 |
|
ovolsca.9 |
|- ( ph -> R e. RR+ ) |
| 10 |
|
ovolsca.10 |
|- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
| 11 |
|
ssrab2 |
|- { x e. RR | ( C x. x ) e. A } C_ RR |
| 12 |
3 11
|
eqsstrdi |
|- ( ph -> B C_ RR ) |
| 13 |
|
ovolcl |
|- ( B C_ RR -> ( vol* ` B ) e. RR* ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( vol* ` B ) e. RR* ) |
| 15 |
|
ovolfcl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 16 |
7 15
|
sylan |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 17 |
16
|
simp3d |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) |
| 18 |
16
|
simp1d |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 19 |
16
|
simp2d |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 20 |
2
|
rpregt0d |
|- ( ph -> ( C e. RR /\ 0 < C ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( C e. RR /\ 0 < C ) ) |
| 22 |
|
lediv1 |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
| 23 |
18 19 21 22
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
| 24 |
17 23
|
mpbid |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) |
| 25 |
|
df-br |
|- ( ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) <-> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. <_ ) |
| 26 |
24 25
|
sylib |
|- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. <_ ) |
| 27 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> C e. RR+ ) |
| 28 |
18 27
|
rerpdivcld |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) / C ) e. RR ) |
| 29 |
19 27
|
rerpdivcld |
|- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) / C ) e. RR ) |
| 30 |
28 29
|
opelxpd |
|- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. ( RR X. RR ) ) |
| 31 |
26 30
|
elind |
|- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 32 |
31 6
|
fmptd |
|- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 33 |
|
eqid |
|- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
| 34 |
|
eqid |
|- seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
| 35 |
33 34
|
ovolsf |
|- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 36 |
32 35
|
syl |
|- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 37 |
36
|
frnd |
|- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ ( 0 [,) +oo ) ) |
| 38 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 39 |
37 38
|
sstrdi |
|- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* ) |
| 40 |
|
supxrcl |
|- ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) |
| 41 |
39 40
|
syl |
|- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) |
| 42 |
4 2
|
rerpdivcld |
|- ( ph -> ( ( vol* ` A ) / C ) e. RR ) |
| 43 |
9
|
rpred |
|- ( ph -> R e. RR ) |
| 44 |
42 43
|
readdcld |
|- ( ph -> ( ( ( vol* ` A ) / C ) + R ) e. RR ) |
| 45 |
44
|
rexrd |
|- ( ph -> ( ( ( vol* ` A ) / C ) + R ) e. RR* ) |
| 46 |
3
|
eleq2d |
|- ( ph -> ( y e. B <-> y e. { x e. RR | ( C x. x ) e. A } ) ) |
| 47 |
|
oveq2 |
|- ( x = y -> ( C x. x ) = ( C x. y ) ) |
| 48 |
47
|
eleq1d |
|- ( x = y -> ( ( C x. x ) e. A <-> ( C x. y ) e. A ) ) |
| 49 |
48
|
elrab |
|- ( y e. { x e. RR | ( C x. x ) e. A } <-> ( y e. RR /\ ( C x. y ) e. A ) ) |
| 50 |
46 49
|
bitrdi |
|- ( ph -> ( y e. B <-> ( y e. RR /\ ( C x. y ) e. A ) ) ) |
| 51 |
|
breq2 |
|- ( x = ( C x. y ) -> ( ( 1st ` ( F ` n ) ) < x <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) |
| 52 |
|
breq1 |
|- ( x = ( C x. y ) -> ( x < ( 2nd ` ( F ` n ) ) <-> ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) |
| 53 |
51 52
|
anbi12d |
|- ( x = ( C x. y ) -> ( ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) <-> ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) ) |
| 54 |
53
|
rexbidv |
|- ( x = ( C x. y ) -> ( E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) ) |
| 55 |
|
ovolfioo |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) ) |
| 56 |
1 7 55
|
syl2anc |
|- ( ph -> ( A C_ U. ran ( (,) o. F ) <-> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) ) |
| 57 |
8 56
|
mpbid |
|- ( ph -> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) |
| 59 |
|
simprr |
|- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> ( C x. y ) e. A ) |
| 60 |
54 58 59
|
rspcdva |
|- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) |
| 61 |
|
opex |
|- <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. _V |
| 62 |
6
|
fvmpt2 |
|- ( ( n e. NN /\ <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. _V ) -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) |
| 63 |
61 62
|
mpan2 |
|- ( n e. NN -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) |
| 64 |
63
|
fveq2d |
|- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( 1st ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) ) |
| 65 |
|
ovex |
|- ( ( 1st ` ( F ` n ) ) / C ) e. _V |
| 66 |
|
ovex |
|- ( ( 2nd ` ( F ` n ) ) / C ) e. _V |
| 67 |
65 66
|
op1st |
|- ( 1st ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) = ( ( 1st ` ( F ` n ) ) / C ) |
| 68 |
64 67
|
eqtrdi |
|- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) / C ) ) |
| 69 |
68
|
adantl |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) / C ) ) |
| 70 |
69
|
breq1d |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) < y <-> ( ( 1st ` ( F ` n ) ) / C ) < y ) ) |
| 71 |
18
|
adantlr |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 72 |
|
simplrl |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> y e. RR ) |
| 73 |
21
|
adantlr |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( C e. RR /\ 0 < C ) ) |
| 74 |
|
ltdivmul |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ y e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( ( 1st ` ( F ` n ) ) / C ) < y <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) |
| 75 |
71 72 73 74
|
syl3anc |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( ( 1st ` ( F ` n ) ) / C ) < y <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) |
| 76 |
70 75
|
bitr2d |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) < ( C x. y ) <-> ( 1st ` ( G ` n ) ) < y ) ) |
| 77 |
19
|
adantlr |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 78 |
|
ltmuldiv2 |
|- ( ( y e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
| 79 |
72 77 73 78
|
syl3anc |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
| 80 |
63
|
fveq2d |
|- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) ) |
| 81 |
65 66
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) = ( ( 2nd ` ( F ` n ) ) / C ) |
| 82 |
80 81
|
eqtrdi |
|- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( ( 2nd ` ( F ` n ) ) / C ) ) |
| 83 |
82
|
adantl |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( ( 2nd ` ( F ` n ) ) / C ) ) |
| 84 |
83
|
breq2d |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( y < ( 2nd ` ( G ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
| 85 |
79 84
|
bitr4d |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( 2nd ` ( G ` n ) ) ) ) |
| 86 |
76 85
|
anbi12d |
|- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) <-> ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 87 |
86
|
rexbidva |
|- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> ( E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) <-> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 88 |
60 87
|
mpbid |
|- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) |
| 89 |
88
|
ex |
|- ( ph -> ( ( y e. RR /\ ( C x. y ) e. A ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 90 |
50 89
|
sylbid |
|- ( ph -> ( y e. B -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 91 |
90
|
ralrimiv |
|- ( ph -> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) |
| 92 |
|
ovolfioo |
|- ( ( B C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( B C_ U. ran ( (,) o. G ) <-> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 93 |
12 32 92
|
syl2anc |
|- ( ph -> ( B C_ U. ran ( (,) o. G ) <-> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 94 |
91 93
|
mpbird |
|- ( ph -> B C_ U. ran ( (,) o. G ) ) |
| 95 |
34
|
ovollb |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ B C_ U. ran ( (,) o. G ) ) -> ( vol* ` B ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) |
| 96 |
32 94 95
|
syl2anc |
|- ( ph -> ( vol* ` B ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) |
| 97 |
|
fzfid |
|- ( ( ph /\ k e. NN ) -> ( 1 ... k ) e. Fin ) |
| 98 |
2
|
rpcnd |
|- ( ph -> C e. CC ) |
| 99 |
98
|
adantr |
|- ( ( ph /\ k e. NN ) -> C e. CC ) |
| 100 |
|
simpl |
|- ( ( ph /\ k e. NN ) -> ph ) |
| 101 |
|
elfznn |
|- ( n e. ( 1 ... k ) -> n e. NN ) |
| 102 |
19 18
|
resubcld |
|- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) |
| 103 |
100 101 102
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) |
| 104 |
103
|
recnd |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. CC ) |
| 105 |
2
|
rpne0d |
|- ( ph -> C =/= 0 ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ k e. NN ) -> C =/= 0 ) |
| 107 |
97 99 104 106
|
fsumdivc |
|- ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = sum_ n e. ( 1 ... k ) ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) |
| 108 |
82 68
|
oveq12d |
|- ( n e. NN -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) |
| 109 |
108
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) |
| 110 |
33
|
ovolfsval |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) ) |
| 111 |
32 110
|
sylan |
|- ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) ) |
| 112 |
19
|
recnd |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. CC ) |
| 113 |
18
|
recnd |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. CC ) |
| 114 |
2
|
rpcnne0d |
|- ( ph -> ( C e. CC /\ C =/= 0 ) ) |
| 115 |
114
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( C e. CC /\ C =/= 0 ) ) |
| 116 |
|
divsubdir |
|- ( ( ( 2nd ` ( F ` n ) ) e. CC /\ ( 1st ` ( F ` n ) ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) |
| 117 |
112 113 115 116
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) |
| 118 |
109 111 117
|
3eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) |
| 119 |
100 101 118
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) |
| 120 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
| 121 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 122 |
120 121
|
eleqtrdi |
|- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 123 |
102 27
|
rerpdivcld |
|- ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. RR ) |
| 124 |
123
|
recnd |
|- ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. CC ) |
| 125 |
100 101 124
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. CC ) |
| 126 |
119 122 125
|
fsumser |
|- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) ) |
| 127 |
107 126
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) ) |
| 128 |
|
eqid |
|- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
| 129 |
128 5
|
ovolsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 130 |
7 129
|
syl |
|- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 131 |
130
|
frnd |
|- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 132 |
131 38
|
sstrdi |
|- ( ph -> ran S C_ RR* ) |
| 133 |
2 9
|
rpmulcld |
|- ( ph -> ( C x. R ) e. RR+ ) |
| 134 |
133
|
rpred |
|- ( ph -> ( C x. R ) e. RR ) |
| 135 |
4 134
|
readdcld |
|- ( ph -> ( ( vol* ` A ) + ( C x. R ) ) e. RR ) |
| 136 |
135
|
rexrd |
|- ( ph -> ( ( vol* ` A ) + ( C x. R ) ) e. RR* ) |
| 137 |
|
supxrleub |
|- ( ( ran S C_ RR* /\ ( ( vol* ` A ) + ( C x. R ) ) e. RR* ) -> ( sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
| 138 |
132 136 137
|
syl2anc |
|- ( ph -> ( sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
| 139 |
10 138
|
mpbid |
|- ( ph -> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
| 140 |
130
|
ffnd |
|- ( ph -> S Fn NN ) |
| 141 |
|
breq1 |
|- ( x = ( S ` k ) -> ( x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
| 142 |
141
|
ralrn |
|- ( S Fn NN -> ( A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
| 143 |
140 142
|
syl |
|- ( ph -> ( A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
| 144 |
139 143
|
mpbid |
|- ( ph -> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
| 145 |
144
|
r19.21bi |
|- ( ( ph /\ k e. NN ) -> ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
| 146 |
7
|
adantr |
|- ( ( ph /\ k e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 147 |
128
|
ovolfsval |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( ( abs o. - ) o. F ) ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 148 |
146 101 147
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. F ) ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 149 |
148 122 104
|
fsumser |
|- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) ) |
| 150 |
5
|
fveq1i |
|- ( S ` k ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) |
| 151 |
149 150
|
eqtr4di |
|- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) = ( S ` k ) ) |
| 152 |
42
|
recnd |
|- ( ph -> ( ( vol* ` A ) / C ) e. CC ) |
| 153 |
9
|
rpcnd |
|- ( ph -> R e. CC ) |
| 154 |
98 152 153
|
adddid |
|- ( ph -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( C x. ( ( vol* ` A ) / C ) ) + ( C x. R ) ) ) |
| 155 |
4
|
recnd |
|- ( ph -> ( vol* ` A ) e. CC ) |
| 156 |
155 98 105
|
divcan2d |
|- ( ph -> ( C x. ( ( vol* ` A ) / C ) ) = ( vol* ` A ) ) |
| 157 |
156
|
oveq1d |
|- ( ph -> ( ( C x. ( ( vol* ` A ) / C ) ) + ( C x. R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) |
| 158 |
154 157
|
eqtrd |
|- ( ph -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) |
| 160 |
145 151 159
|
3brtr4d |
|- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 161 |
97 103
|
fsumrecl |
|- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) |
| 162 |
44
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( ( ( vol* ` A ) / C ) + R ) e. RR ) |
| 163 |
20
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( C e. RR /\ 0 < C ) ) |
| 164 |
|
ledivmul |
|- ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR /\ ( ( ( vol* ` A ) / C ) + R ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) ) |
| 165 |
161 162 163 164
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) ) |
| 166 |
160 165
|
mpbird |
|- ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 167 |
127 166
|
eqbrtrrd |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 168 |
167
|
ralrimiva |
|- ( ph -> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 169 |
36
|
ffnd |
|- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN ) |
| 170 |
|
breq1 |
|- ( y = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) -> ( y <_ ( ( ( vol* ` A ) / C ) + R ) <-> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 171 |
170
|
ralrn |
|- ( seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN -> ( A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 172 |
169 171
|
syl |
|- ( ph -> ( A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 173 |
168 172
|
mpbird |
|- ( ph -> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 174 |
|
supxrleub |
|- ( ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* /\ ( ( ( vol* ` A ) / C ) + R ) e. RR* ) -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 175 |
39 45 174
|
syl2anc |
|- ( ph -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 176 |
173 175
|
mpbird |
|- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 177 |
14 41 45 96 176
|
xrletrd |
|- ( ph -> ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |