Metamath Proof Explorer


Theorem ovolgelb

Description: The outer volume is the greatest lower bound on the sum of all interval coverings of A . (Contributed by Mario Carneiro, 15-Jun-2014)

Ref Expression
Hypothesis ovolgelb.1 S=seq1+absg
Assertion ovolgelb Avol*AB+g2Aran.gsupranS*<vol*A+B

Proof

Step Hyp Ref Expression
1 ovolgelb.1 S=seq1+absg
2 simp2 Avol*AB+vol*A
3 simp3 Avol*AB+B+
4 2 3 ltaddrpd Avol*AB+vol*A<vol*A+B
5 3 rpred Avol*AB+B
6 2 5 readdcld Avol*AB+vol*A+B
7 2 6 ltnled Avol*AB+vol*A<vol*A+B¬vol*A+Bvol*A
8 4 7 mpbid Avol*AB+¬vol*A+Bvol*A
9 eqid y*|g2Aran.gy=supranseq1+absg*<=y*|g2Aran.gy=supranseq1+absg*<
10 9 ovolval Avol*A=supy*|g2Aran.gy=supranseq1+absg*<*<
11 10 3ad2ant1 Avol*AB+vol*A=supy*|g2Aran.gy=supranseq1+absg*<*<
12 11 breq2d Avol*AB+vol*A+Bvol*Avol*A+Bsupy*|g2Aran.gy=supranseq1+absg*<*<
13 ssrab2 y*|g2Aran.gy=supranseq1+absg*<*
14 6 rexrd Avol*AB+vol*A+B*
15 infxrgelb y*|g2Aran.gy=supranseq1+absg*<*vol*A+B*vol*A+Bsupy*|g2Aran.gy=supranseq1+absg*<*<xy*|g2Aran.gy=supranseq1+absg*<vol*A+Bx
16 13 14 15 sylancr Avol*AB+vol*A+Bsupy*|g2Aran.gy=supranseq1+absg*<*<xy*|g2Aran.gy=supranseq1+absg*<vol*A+Bx
17 eqeq1 y=xy=supranseq1+absg*<x=supranseq1+absg*<
18 1 rneqi ranS=ranseq1+absg
19 18 supeq1i supranS*<=supranseq1+absg*<
20 19 eqeq2i x=supranS*<x=supranseq1+absg*<
21 17 20 bitr4di y=xy=supranseq1+absg*<x=supranS*<
22 21 anbi2d y=xAran.gy=supranseq1+absg*<Aran.gx=supranS*<
23 22 rexbidv y=xg2Aran.gy=supranseq1+absg*<g2Aran.gx=supranS*<
24 23 ralrab xy*|g2Aran.gy=supranseq1+absg*<vol*A+Bxx*g2Aran.gx=supranS*<vol*A+Bx
25 ralcom x*g2Aran.gx=supranS*<vol*A+Bxg2x*Aran.gx=supranS*<vol*A+Bx
26 r19.23v g2Aran.gx=supranS*<vol*A+Bxg2Aran.gx=supranS*<vol*A+Bx
27 26 ralbii x*g2Aran.gx=supranS*<vol*A+Bxx*g2Aran.gx=supranS*<vol*A+Bx
28 ancomst Aran.gx=supranS*<vol*A+Bxx=supranS*<Aran.gvol*A+Bx
29 impexp x=supranS*<Aran.gvol*A+Bxx=supranS*<Aran.gvol*A+Bx
30 28 29 bitri Aran.gx=supranS*<vol*A+Bxx=supranS*<Aran.gvol*A+Bx
31 30 ralbii x*Aran.gx=supranS*<vol*A+Bxx*x=supranS*<Aran.gvol*A+Bx
32 elovolmlem g2g:2
33 eqid absg=absg
34 33 1 ovolsf g:2S:0+∞
35 32 34 sylbi g2S:0+∞
36 35 frnd g2ranS0+∞
37 icossxr 0+∞*
38 36 37 sstrdi g2ranS*
39 supxrcl ranS*supranS*<*
40 38 39 syl g2supranS*<*
41 breq2 x=supranS*<vol*A+Bxvol*A+BsupranS*<
42 41 imbi2d x=supranS*<Aran.gvol*A+BxAran.gvol*A+BsupranS*<
43 42 ceqsralv supranS*<*x*x=supranS*<Aran.gvol*A+BxAran.gvol*A+BsupranS*<
44 40 43 syl g2x*x=supranS*<Aran.gvol*A+BxAran.gvol*A+BsupranS*<
45 31 44 bitrid g2x*Aran.gx=supranS*<vol*A+BxAran.gvol*A+BsupranS*<
46 45 ralbiia g2x*Aran.gx=supranS*<vol*A+Bxg2Aran.gvol*A+BsupranS*<
47 25 27 46 3bitr3i x*g2Aran.gx=supranS*<vol*A+Bxg2Aran.gvol*A+BsupranS*<
48 24 47 bitri xy*|g2Aran.gy=supranseq1+absg*<vol*A+Bxg2Aran.gvol*A+BsupranS*<
49 16 48 bitr2di Avol*AB+g2Aran.gvol*A+BsupranS*<vol*A+Bsupy*|g2Aran.gy=supranseq1+absg*<*<
50 12 49 bitr4d Avol*AB+vol*A+Bvol*Ag2Aran.gvol*A+BsupranS*<
51 8 50 mtbid Avol*AB+¬g2Aran.gvol*A+BsupranS*<
52 rexanali g2Aran.g¬vol*A+BsupranS*<¬g2Aran.gvol*A+BsupranS*<
53 51 52 sylibr Avol*AB+g2Aran.g¬vol*A+BsupranS*<
54 xrltnle supranS*<*vol*A+B*supranS*<<vol*A+B¬vol*A+BsupranS*<
55 xrltle supranS*<*vol*A+B*supranS*<<vol*A+BsupranS*<vol*A+B
56 54 55 sylbird supranS*<*vol*A+B*¬vol*A+BsupranS*<supranS*<vol*A+B
57 40 14 56 syl2anr Avol*AB+g2¬vol*A+BsupranS*<supranS*<vol*A+B
58 57 anim2d Avol*AB+g2Aran.g¬vol*A+BsupranS*<Aran.gsupranS*<vol*A+B
59 58 reximdva Avol*AB+g2Aran.g¬vol*A+BsupranS*<g2Aran.gsupranS*<vol*A+B
60 53 59 mpd Avol*AB+g2Aran.gsupranS*<vol*A+B