Step |
Hyp |
Ref |
Expression |
1 |
|
df-3an |
|
2 |
|
n0 |
|
3 |
|
n0 |
|
4 |
2 3
|
anbi12i |
|
5 |
|
exdistrv |
|
6 |
4 5
|
bitr4i |
|
7 |
|
simpll |
|
8 |
|
simprll |
|
9 |
|
simplrl |
|
10 |
|
elunii |
|
11 |
8 9 10
|
syl2anc |
|
12 |
|
simprlr |
|
13 |
|
simplrr |
|
14 |
|
elunii |
|
15 |
12 13 14
|
syl2anc |
|
16 |
|
eqid |
|
17 |
16
|
pconncn |
|
18 |
7 11 15 17
|
syl3anc |
|
19 |
|
simplrr |
|
20 |
|
simplrr |
|
21 |
20
|
adantl |
|
22 |
|
iiuni |
|
23 |
|
iiconn |
|
24 |
23
|
a1i |
|
25 |
|
simprll |
|
26 |
9
|
adantr |
|
27 |
|
uncom |
|
28 |
|
simprr |
|
29 |
27 28
|
eqtrid |
|
30 |
13
|
adantr |
|
31 |
|
elssuni |
|
32 |
30 31
|
syl |
|
33 |
|
incom |
|
34 |
33 19
|
eqtrid |
|
35 |
|
uneqdifeq |
|
36 |
32 34 35
|
syl2anc |
|
37 |
29 36
|
mpbid |
|
38 |
|
pconntop |
|
39 |
38
|
ad3antrrr |
|
40 |
16
|
opncld |
|
41 |
39 30 40
|
syl2anc |
|
42 |
37 41
|
eqeltrrd |
|
43 |
|
0elunit |
|
44 |
43
|
a1i |
|
45 |
|
simplrl |
|
46 |
45
|
adantl |
|
47 |
8
|
adantr |
|
48 |
46 47
|
eqeltrd |
|
49 |
22 24 25 26 42 44 48
|
conncn |
|
50 |
|
1elunit |
|
51 |
|
ffvelrn |
|
52 |
49 50 51
|
sylancl |
|
53 |
21 52
|
eqeltrrd |
|
54 |
12
|
adantr |
|
55 |
|
inelcm |
|
56 |
53 54 55
|
syl2anc |
|
57 |
19 56
|
pm2.21ddne |
|
58 |
57
|
expr |
|
59 |
58
|
pm2.01d |
|
60 |
59
|
neqned |
|
61 |
18 60
|
rexlimddv |
|
62 |
61
|
exp32 |
|
63 |
62
|
exlimdvv |
|
64 |
6 63
|
syl5bi |
|
65 |
64
|
impd |
|
66 |
1 65
|
syl5bi |
|
67 |
66
|
ralrimivva |
|
68 |
16
|
toptopon |
|
69 |
38 68
|
sylib |
|
70 |
|
dfconn2 |
|
71 |
69 70
|
syl |
|
72 |
67 71
|
mpbird |
|