| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-3an |  | 
						
							| 2 |  | n0 |  | 
						
							| 3 |  | n0 |  | 
						
							| 4 | 2 3 | anbi12i |  | 
						
							| 5 |  | exdistrv |  | 
						
							| 6 | 4 5 | bitr4i |  | 
						
							| 7 |  | simpll |  | 
						
							| 8 |  | simprll |  | 
						
							| 9 |  | simplrl |  | 
						
							| 10 |  | elunii |  | 
						
							| 11 | 8 9 10 | syl2anc |  | 
						
							| 12 |  | simprlr |  | 
						
							| 13 |  | simplrr |  | 
						
							| 14 |  | elunii |  | 
						
							| 15 | 12 13 14 | syl2anc |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 16 | pconncn |  | 
						
							| 18 | 7 11 15 17 | syl3anc |  | 
						
							| 19 |  | simplrr |  | 
						
							| 20 |  | simplrr |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | iiuni |  | 
						
							| 23 |  | iiconn |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 |  | simprll |  | 
						
							| 26 | 9 | adantr |  | 
						
							| 27 |  | uncom |  | 
						
							| 28 |  | simprr |  | 
						
							| 29 | 27 28 | eqtrid |  | 
						
							| 30 | 13 | adantr |  | 
						
							| 31 |  | elssuni |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 |  | incom |  | 
						
							| 34 | 33 19 | eqtrid |  | 
						
							| 35 |  | uneqdifeq |  | 
						
							| 36 | 32 34 35 | syl2anc |  | 
						
							| 37 | 29 36 | mpbid |  | 
						
							| 38 |  | pconntop |  | 
						
							| 39 | 38 | ad3antrrr |  | 
						
							| 40 | 16 | opncld |  | 
						
							| 41 | 39 30 40 | syl2anc |  | 
						
							| 42 | 37 41 | eqeltrrd |  | 
						
							| 43 |  | 0elunit |  | 
						
							| 44 | 43 | a1i |  | 
						
							| 45 |  | simplrl |  | 
						
							| 46 | 45 | adantl |  | 
						
							| 47 | 8 | adantr |  | 
						
							| 48 | 46 47 | eqeltrd |  | 
						
							| 49 | 22 24 25 26 42 44 48 | conncn |  | 
						
							| 50 |  | 1elunit |  | 
						
							| 51 |  | ffvelcdm |  | 
						
							| 52 | 49 50 51 | sylancl |  | 
						
							| 53 | 21 52 | eqeltrrd |  | 
						
							| 54 | 12 | adantr |  | 
						
							| 55 |  | inelcm |  | 
						
							| 56 | 53 54 55 | syl2anc |  | 
						
							| 57 | 19 56 | pm2.21ddne |  | 
						
							| 58 | 57 | expr |  | 
						
							| 59 | 58 | pm2.01d |  | 
						
							| 60 | 59 | neqned |  | 
						
							| 61 | 18 60 | rexlimddv |  | 
						
							| 62 | 61 | exp32 |  | 
						
							| 63 | 62 | exlimdvv |  | 
						
							| 64 | 6 63 | biimtrid |  | 
						
							| 65 | 64 | impd |  | 
						
							| 66 | 1 65 | biimtrid |  | 
						
							| 67 | 66 | ralrimivva |  | 
						
							| 68 | 16 | toptopon |  | 
						
							| 69 | 38 68 | sylib |  | 
						
							| 70 |  | dfconn2 |  | 
						
							| 71 | 69 70 | syl |  | 
						
							| 72 | 67 71 | mpbird |  |