Step |
Hyp |
Ref |
Expression |
1 |
|
perfectALTVlem.1 |
|
2 |
|
perfectALTVlem.2 |
|
3 |
|
perfectALTVlem.3 |
|
4 |
|
perfectALTVlem.4 |
|
5 |
|
2nn |
|
6 |
1
|
nnnn0d |
|
7 |
|
peano2nn0 |
|
8 |
6 7
|
syl |
|
9 |
|
nnexpcl |
|
10 |
5 8 9
|
sylancr |
|
11 |
|
2re |
|
12 |
11
|
a1i |
|
13 |
1
|
peano2nnd |
|
14 |
|
1lt2 |
|
15 |
14
|
a1i |
|
16 |
|
expgt1 |
|
17 |
12 13 15 16
|
syl3anc |
|
18 |
|
1nn |
|
19 |
|
nnsub |
|
20 |
18 10 19
|
sylancr |
|
21 |
17 20
|
mpbid |
|
22 |
10
|
nnzd |
|
23 |
|
peano2zm |
|
24 |
22 23
|
syl |
|
25 |
|
1nn0 |
|
26 |
|
sgmnncl |
|
27 |
25 2 26
|
sylancr |
|
28 |
27
|
nnzd |
|
29 |
|
dvdsmul1 |
|
30 |
24 28 29
|
syl2anc |
|
31 |
|
2cn |
|
32 |
|
expp1 |
|
33 |
31 6 32
|
sylancr |
|
34 |
|
nnexpcl |
|
35 |
5 6 34
|
sylancr |
|
36 |
35
|
nncnd |
|
37 |
|
mulcom |
|
38 |
36 31 37
|
sylancl |
|
39 |
33 38
|
eqtrd |
|
40 |
39
|
oveq1d |
|
41 |
31
|
a1i |
|
42 |
2
|
nncnd |
|
43 |
41 36 42
|
mulassd |
|
44 |
|
1cnd |
|
45 |
|
isodd7 |
|
46 |
45
|
simprbi |
|
47 |
3 46
|
syl |
|
48 |
|
2z |
|
49 |
48
|
a1i |
|
50 |
2
|
nnzd |
|
51 |
|
rpexp1i |
|
52 |
49 50 6 51
|
syl3anc |
|
53 |
47 52
|
mpd |
|
54 |
|
sgmmul |
|
55 |
44 35 2 53 54
|
syl13anc |
|
56 |
1
|
nncnd |
|
57 |
|
pncan1 |
|
58 |
56 57
|
syl |
|
59 |
58
|
oveq2d |
|
60 |
59
|
oveq2d |
|
61 |
|
1sgm2ppw |
|
62 |
13 61
|
syl |
|
63 |
60 62
|
eqtr3d |
|
64 |
63
|
oveq1d |
|
65 |
55 4 64
|
3eqtr3d |
|
66 |
40 43 65
|
3eqtrd |
|
67 |
30 66
|
breqtrrd |
|
68 |
24 22
|
gcdcomd |
|
69 |
|
nnpw2evenALTV |
|
70 |
13 69
|
syl |
|
71 |
|
evenm1odd |
|
72 |
70 71
|
syl |
|
73 |
|
isodd7 |
|
74 |
73
|
simprbi |
|
75 |
72 74
|
syl |
|
76 |
|
rpexp1i |
|
77 |
49 24 8 76
|
syl3anc |
|
78 |
75 77
|
mpd |
|
79 |
68 78
|
eqtrd |
|
80 |
|
coprmdvds |
|
81 |
24 22 50 80
|
syl3anc |
|
82 |
67 79 81
|
mp2and |
|
83 |
|
nndivdvds |
|
84 |
2 21 83
|
syl2anc |
|
85 |
82 84
|
mpbid |
|
86 |
10 21 85
|
3jca |
|