| Step |
Hyp |
Ref |
Expression |
| 1 |
|
perfectALTVlem.1 |
|
| 2 |
|
perfectALTVlem.2 |
|
| 3 |
|
perfectALTVlem.3 |
|
| 4 |
|
perfectALTVlem.4 |
|
| 5 |
|
2nn |
|
| 6 |
1
|
nnnn0d |
|
| 7 |
|
peano2nn0 |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
nnexpcl |
|
| 10 |
5 8 9
|
sylancr |
|
| 11 |
|
2re |
|
| 12 |
11
|
a1i |
|
| 13 |
1
|
peano2nnd |
|
| 14 |
|
1lt2 |
|
| 15 |
14
|
a1i |
|
| 16 |
|
expgt1 |
|
| 17 |
12 13 15 16
|
syl3anc |
|
| 18 |
|
1nn |
|
| 19 |
|
nnsub |
|
| 20 |
18 10 19
|
sylancr |
|
| 21 |
17 20
|
mpbid |
|
| 22 |
10
|
nnzd |
|
| 23 |
|
peano2zm |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
1nn0 |
|
| 26 |
|
sgmnncl |
|
| 27 |
25 2 26
|
sylancr |
|
| 28 |
27
|
nnzd |
|
| 29 |
|
dvdsmul1 |
|
| 30 |
24 28 29
|
syl2anc |
|
| 31 |
|
2cn |
|
| 32 |
|
expp1 |
|
| 33 |
31 6 32
|
sylancr |
|
| 34 |
|
nnexpcl |
|
| 35 |
5 6 34
|
sylancr |
|
| 36 |
35
|
nncnd |
|
| 37 |
|
mulcom |
|
| 38 |
36 31 37
|
sylancl |
|
| 39 |
33 38
|
eqtrd |
|
| 40 |
39
|
oveq1d |
|
| 41 |
31
|
a1i |
|
| 42 |
2
|
nncnd |
|
| 43 |
41 36 42
|
mulassd |
|
| 44 |
|
1cnd |
|
| 45 |
|
isodd7 |
|
| 46 |
45
|
simprbi |
|
| 47 |
3 46
|
syl |
|
| 48 |
|
2z |
|
| 49 |
48
|
a1i |
|
| 50 |
2
|
nnzd |
|
| 51 |
|
rpexp1i |
|
| 52 |
49 50 6 51
|
syl3anc |
|
| 53 |
47 52
|
mpd |
|
| 54 |
|
sgmmul |
|
| 55 |
44 35 2 53 54
|
syl13anc |
|
| 56 |
1
|
nncnd |
|
| 57 |
|
pncan1 |
|
| 58 |
56 57
|
syl |
|
| 59 |
58
|
oveq2d |
|
| 60 |
59
|
oveq2d |
|
| 61 |
|
1sgm2ppw |
|
| 62 |
13 61
|
syl |
|
| 63 |
60 62
|
eqtr3d |
|
| 64 |
63
|
oveq1d |
|
| 65 |
55 4 64
|
3eqtr3d |
|
| 66 |
40 43 65
|
3eqtrd |
|
| 67 |
30 66
|
breqtrrd |
|
| 68 |
24 22
|
gcdcomd |
|
| 69 |
|
nnpw2evenALTV |
|
| 70 |
|
evenm1odd |
|
| 71 |
|
isodd7 |
|
| 72 |
71
|
simprbi |
|
| 73 |
13 69 70 72
|
4syl |
|
| 74 |
|
rpexp1i |
|
| 75 |
49 24 8 74
|
syl3anc |
|
| 76 |
73 75
|
mpd |
|
| 77 |
68 76
|
eqtrd |
|
| 78 |
|
coprmdvds |
|
| 79 |
24 22 50 78
|
syl3anc |
|
| 80 |
67 77 79
|
mp2and |
|
| 81 |
|
nndivdvds |
|
| 82 |
2 21 81
|
syl2anc |
|
| 83 |
80 82
|
mpbid |
|
| 84 |
10 21 83
|
3jca |
|