Metamath Proof Explorer


Theorem pi1xfrcnv

Description: Given a path F between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1xfr.p P=Jπ1F0
pi1xfr.q Q=Jπ1F1
pi1xfr.b B=BaseP
pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
pi1xfr.j φJTopOnX
pi1xfr.f φFIICnJ
pi1xfr.i I=x01F1x
pi1xfrcnv.h H=ranhBaseQhphJF*𝑝Jh*𝑝JIphJ
Assertion pi1xfrcnv φG-1=HG-1QGrpHomP

Proof

Step Hyp Ref Expression
1 pi1xfr.p P=Jπ1F0
2 pi1xfr.q Q=Jπ1F1
3 pi1xfr.b B=BaseP
4 pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
5 pi1xfr.j φJTopOnX
6 pi1xfr.f φFIICnJ
7 pi1xfr.i I=x01F1x
8 pi1xfrcnv.h H=ranhBaseQhphJF*𝑝Jh*𝑝JIphJ
9 1 2 3 4 5 6 7 8 pi1xfrcnvlem φG-1H
10 fvex phJV
11 ecexg phJVhphJV
12 10 11 mp1i φhBaseQhphJV
13 ecexg phJVF*𝑝Jh*𝑝JIphJV
14 10 13 mp1i φhBaseQF*𝑝Jh*𝑝JIphJV
15 8 12 14 fliftrel φHV×V
16 df-rel RelHHV×V
17 15 16 sylibr φRelH
18 dfrel2 RelHH-1-1=H
19 17 18 sylib φH-1-1=H
20 0elunit 001
21 oveq2 x=01x=10
22 1m0e1 10=1
23 21 22 eqtrdi x=01x=1
24 23 fveq2d x=0F1x=F1
25 fvex F1V
26 24 7 25 fvmpt 001I0=F1
27 20 26 ax-mp I0=F1
28 27 oveq2i Jπ1I0=Jπ1F1
29 2 28 eqtr4i Q=Jπ1I0
30 1elunit 101
31 oveq2 x=11x=11
32 31 fveq2d x=1F1x=F11
33 1m1e0 11=0
34 33 fveq2i F11=F0
35 32 34 eqtrdi x=1F1x=F0
36 fvex F0V
37 35 7 36 fvmpt 101I1=F0
38 30 37 ax-mp I1=F0
39 38 oveq2i Jπ1I1=Jπ1F0
40 1 39 eqtr4i P=Jπ1I1
41 eqid BaseQ=BaseQ
42 eqid ranhBaseQhphJz01I1z*𝑝Jh*𝑝JIphJ=ranhBaseQhphJz01I1z*𝑝Jh*𝑝JIphJ
43 7 pcorevcl FIICnJIIICnJI0=F1I1=F0
44 6 43 syl φIIICnJI0=F1I1=F0
45 44 simp1d φIIICnJ
46 oveq2 z=y1z=1y
47 46 fveq2d z=yI1z=I1y
48 47 cbvmptv z01I1z=y01I1y
49 eqid rangBasePgphJI*𝑝Jg*𝑝Jz01I1zphJ=rangBasePgphJI*𝑝Jg*𝑝Jz01I1zphJ
50 29 40 41 42 5 45 48 49 pi1xfrcnvlem φranhBaseQhphJz01I1z*𝑝Jh*𝑝JIphJ-1rangBasePgphJI*𝑝Jg*𝑝Jz01I1zphJ
51 iitopon IITopOn01
52 cnf2 IITopOn01JTopOnXFIICnJF:01X
53 51 5 6 52 mp3an2i φF:01X
54 53 feqmptd φF=z01Fz
55 iirev z011z01
56 oveq2 x=1z1x=11z
57 56 fveq2d x=1zF1x=F11z
58 fvex F11zV
59 57 7 58 fvmpt 1z01I1z=F11z
60 55 59 syl z01I1z=F11z
61 ax-1cn 1
62 unitssre 01
63 62 sseli z01z
64 63 recnd z01z
65 nncan 1z11z=z
66 61 64 65 sylancr z0111z=z
67 66 fveq2d z01F11z=Fz
68 60 67 eqtrd z01I1z=Fz
69 68 mpteq2ia z01I1z=z01Fz
70 54 69 eqtr4di φF=z01I1z
71 70 oveq1d φF*𝑝Jh*𝑝JI=z01I1z*𝑝Jh*𝑝JI
72 71 eceq1d φF*𝑝Jh*𝑝JIphJ=z01I1z*𝑝Jh*𝑝JIphJ
73 72 opeq2d φhphJF*𝑝Jh*𝑝JIphJ=hphJz01I1z*𝑝Jh*𝑝JIphJ
74 73 mpteq2dv φhBaseQhphJF*𝑝Jh*𝑝JIphJ=hBaseQhphJz01I1z*𝑝Jh*𝑝JIphJ
75 74 rneqd φranhBaseQhphJF*𝑝Jh*𝑝JIphJ=ranhBaseQhphJz01I1z*𝑝Jh*𝑝JIphJ
76 8 75 eqtrid φH=ranhBaseQhphJz01I1z*𝑝Jh*𝑝JIphJ
77 76 cnveqd φH-1=ranhBaseQhphJz01I1z*𝑝Jh*𝑝JIphJ-1
78 3 a1i φB=BaseP
79 78 unieqd φB=BaseP
80 70 oveq2d φg*𝑝JF=g*𝑝Jz01I1z
81 80 oveq2d φI*𝑝Jg*𝑝JF=I*𝑝Jg*𝑝Jz01I1z
82 81 eceq1d φI*𝑝Jg*𝑝JFphJ=I*𝑝Jg*𝑝Jz01I1zphJ
83 82 opeq2d φgphJI*𝑝Jg*𝑝JFphJ=gphJI*𝑝Jg*𝑝Jz01I1zphJ
84 79 83 mpteq12dv φgBgphJI*𝑝Jg*𝑝JFphJ=gBasePgphJI*𝑝Jg*𝑝Jz01I1zphJ
85 84 rneqd φrangBgphJI*𝑝Jg*𝑝JFphJ=rangBasePgphJI*𝑝Jg*𝑝Jz01I1zphJ
86 4 85 eqtrid φG=rangBasePgphJI*𝑝Jg*𝑝Jz01I1zphJ
87 50 77 86 3sstr4d φH-1G
88 cnvss H-1GH-1-1G-1
89 87 88 syl φH-1-1G-1
90 19 89 eqsstrrd φHG-1
91 9 90 eqssd φG-1=H
92 91 76 eqtrd φG-1=ranhBaseQhphJz01I1z*𝑝Jh*𝑝JIphJ
93 29 40 41 42 5 45 48 pi1xfr φranhBaseQhphJz01I1z*𝑝Jh*𝑝JIphJQGrpHomP
94 92 93 eqeltrd φG-1QGrpHomP
95 91 94 jca φG-1=HG-1QGrpHomP