| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1xfr.p |
|
| 2 |
|
pi1xfr.q |
|
| 3 |
|
pi1xfr.b |
|
| 4 |
|
pi1xfr.g |
|
| 5 |
|
pi1xfr.j |
|
| 6 |
|
pi1xfr.f |
|
| 7 |
|
pi1xfrval.i |
|
| 8 |
|
pi1xfrval.1 |
|
| 9 |
|
pi1xfrval.2 |
|
| 10 |
5
|
adantr |
|
| 11 |
|
iitopon |
|
| 12 |
|
cnf2 |
|
| 13 |
11 5 6 12
|
mp3an2i |
|
| 14 |
|
0elunit |
|
| 15 |
|
ffvelcdm |
|
| 16 |
13 14 15
|
sylancl |
|
| 17 |
16
|
adantr |
|
| 18 |
3
|
a1i |
|
| 19 |
1 5 16 18
|
pi1eluni |
|
| 20 |
19
|
biimpa |
|
| 21 |
20
|
simp1d |
|
| 22 |
20
|
simp2d |
|
| 23 |
20
|
simp3d |
|
| 24 |
1 3 10 17 21 22 23
|
elpi1i |
|
| 25 |
|
eqid |
|
| 26 |
|
1elunit |
|
| 27 |
|
ffvelcdm |
|
| 28 |
13 26 27
|
sylancl |
|
| 29 |
28
|
adantr |
|
| 30 |
7
|
adantr |
|
| 31 |
6
|
adantr |
|
| 32 |
21 31 23
|
pcocn |
|
| 33 |
21 31
|
pco0 |
|
| 34 |
9
|
adantr |
|
| 35 |
22 33 34
|
3eqtr4rd |
|
| 36 |
30 32 35
|
pcocn |
|
| 37 |
30 32
|
pco0 |
|
| 38 |
8
|
adantr |
|
| 39 |
37 38
|
eqtr4d |
|
| 40 |
30 32
|
pco1 |
|
| 41 |
21 31
|
pco1 |
|
| 42 |
40 41
|
eqtrd |
|
| 43 |
2 25 10 29 36 39 42
|
elpi1i |
|
| 44 |
|
eceq1 |
|
| 45 |
|
oveq1 |
|
| 46 |
45
|
oveq2d |
|
| 47 |
46
|
eceq1d |
|
| 48 |
|
phtpcer |
|
| 49 |
48
|
a1i |
|
| 50 |
22
|
3ad2antr1 |
|
| 51 |
21
|
3ad2antr1 |
|
| 52 |
6
|
adantr |
|
| 53 |
51 52
|
pco0 |
|
| 54 |
9
|
adantr |
|
| 55 |
50 53 54
|
3eqtr4rd |
|
| 56 |
7
|
adantr |
|
| 57 |
49 56
|
erref |
|
| 58 |
23
|
3ad2antr1 |
|
| 59 |
|
simpr3 |
|
| 60 |
49 51
|
erth |
|
| 61 |
59 60
|
mpbird |
|
| 62 |
49 52
|
erref |
|
| 63 |
58 61 62
|
pcohtpy |
|
| 64 |
55 57 63
|
pcohtpy |
|
| 65 |
49 64
|
erthi |
|
| 66 |
4 24 43 44 47 65
|
fliftfund |
|
| 67 |
4 24 43
|
fliftf |
|
| 68 |
66 67
|
mpbid |
|
| 69 |
1 5 16 18
|
pi1bas2 |
|
| 70 |
|
df-qs |
|
| 71 |
|
eqid |
|
| 72 |
71
|
rnmpt |
|
| 73 |
70 72
|
eqtr4i |
|
| 74 |
69 73
|
eqtrdi |
|
| 75 |
74
|
feq2d |
|
| 76 |
68 75
|
mpbird |
|