Metamath Proof Explorer


Theorem pl1cn

Description: A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018)

Ref Expression
Hypotheses pl1cn.p P=Poly1R
pl1cn.e E=eval1R
pl1cn.b B=BaseP
pl1cn.k K=BaseR
pl1cn.j J=TopOpenR
pl1cn.1 φRCRing
pl1cn.2 φRTopRing
pl1cn.3 φFB
Assertion pl1cn φEFJCnJ

Proof

Step Hyp Ref Expression
1 pl1cn.p P=Poly1R
2 pl1cn.e E=eval1R
3 pl1cn.b B=BaseP
4 pl1cn.k K=BaseR
5 pl1cn.j J=TopOpenR
6 pl1cn.1 φRCRing
7 pl1cn.2 φRTopRing
8 pl1cn.3 φFB
9 eqid +R=+R
10 eqid R=R
11 eqid raneval1R=raneval1R
12 4 fvexi KV
13 12 a1i φfJCnJgJCnJKV
14 fvexd φfJCnJgJCnJxKfxV
15 fvexd φfJCnJgJCnJxKgxV
16 simp1 φfJCnJgJCnJφ
17 eqid J=J
18 17 17 cnf fJCnJf:JJ
19 18 ffnd fJCnJfFnJ
20 19 3ad2ant2 φfJCnJgJCnJfFnJ
21 trgtgp RTopRingRTopGrp
22 5 4 tgptopon RTopGrpJTopOnK
23 7 21 22 3syl φJTopOnK
24 toponuni JTopOnKK=J
25 23 24 syl φK=J
26 25 fneq2d φfFnKfFnJ
27 dffn5 fFnKf=xKfx
28 26 27 bitr3di φfFnJf=xKfx
29 28 biimpa φfFnJf=xKfx
30 16 20 29 syl2anc φfJCnJgJCnJf=xKfx
31 17 17 cnf gJCnJg:JJ
32 31 ffnd gJCnJgFnJ
33 32 3ad2ant3 φfJCnJgJCnJgFnJ
34 25 fneq2d φgFnKgFnJ
35 dffn5 gFnKg=xKgx
36 34 35 bitr3di φgFnJg=xKgx
37 36 biimpa φgFnJg=xKgx
38 16 33 37 syl2anc φfJCnJgJCnJg=xKgx
39 13 14 15 30 38 offval2 φfJCnJgJCnJf+Rfg=xKfx+Rgx
40 23 3ad2ant1 φfJCnJgJCnJJTopOnK
41 simp2 φfJCnJgJCnJfJCnJ
42 30 41 eqeltrrd φfJCnJgJCnJxKfxJCnJ
43 simp3 φfJCnJgJCnJgJCnJ
44 38 43 eqeltrrd φfJCnJgJCnJxKgxJCnJ
45 eqid +𝑓R=+𝑓R
46 4 9 45 plusffval +𝑓R=yK,zKy+Rz
47 5 45 tgpcn RTopGrp+𝑓RJ×tJCnJ
48 7 21 47 3syl φ+𝑓RJ×tJCnJ
49 46 48 eqeltrrid φyK,zKy+RzJ×tJCnJ
50 49 3ad2ant1 φfJCnJgJCnJyK,zKy+RzJ×tJCnJ
51 oveq12 y=fxz=gxy+Rz=fx+Rgx
52 40 42 44 40 40 50 51 cnmpt12 φfJCnJgJCnJxKfx+RgxJCnJ
53 39 52 eqeltrd φfJCnJgJCnJf+RfgJCnJ
54 53 3adant2l φfraneval1RfJCnJgJCnJf+RfgJCnJ
55 54 3adant3l φfraneval1RfJCnJgraneval1RgJCnJf+RfgJCnJ
56 55 3expb φfraneval1RfJCnJgraneval1RgJCnJf+RfgJCnJ
57 13 14 15 30 38 offval2 φfJCnJgJCnJfRfg=xKfxRgx
58 eqid mulGrpR=mulGrpR
59 58 4 mgpbas K=BasemulGrpR
60 58 10 mgpplusg R=+mulGrpR
61 eqid +𝑓mulGrpR=+𝑓mulGrpR
62 59 60 61 plusffval +𝑓mulGrpR=yK,zKyRz
63 5 61 mulrcn RTopRing+𝑓mulGrpRJ×tJCnJ
64 7 63 syl φ+𝑓mulGrpRJ×tJCnJ
65 62 64 eqeltrrid φyK,zKyRzJ×tJCnJ
66 65 3ad2ant1 φfJCnJgJCnJyK,zKyRzJ×tJCnJ
67 oveq12 y=fxz=gxyRz=fxRgx
68 40 42 44 40 40 66 67 cnmpt12 φfJCnJgJCnJxKfxRgxJCnJ
69 57 68 eqeltrd φfJCnJgJCnJfRfgJCnJ
70 69 3adant2l φfraneval1RfJCnJgJCnJfRfgJCnJ
71 70 3adant3l φfraneval1RfJCnJgraneval1RgJCnJfRfgJCnJ
72 71 3expb φfraneval1RfJCnJgraneval1RgJCnJfRfgJCnJ
73 eleq1 h=K×fhJCnJK×fJCnJ
74 eleq1 h=IKhJCnJIKJCnJ
75 eleq1 h=fhJCnJfJCnJ
76 eleq1 h=ghJCnJgJCnJ
77 eleq1 h=f+RfghJCnJf+RfgJCnJ
78 eleq1 h=fRfghJCnJfRfgJCnJ
79 eleq1 h=EFhJCnJEFJCnJ
80 23 adantr φfKJTopOnK
81 simpr φfKfK
82 cnconst2 JTopOnKJTopOnKfKK×fJCnJ
83 80 80 81 82 syl3anc φfKK×fJCnJ
84 idcn JTopOnKIKJCnJ
85 23 84 syl φIKJCnJ
86 eqid R𝑠K=R𝑠K
87 2 1 86 4 evl1rhm RCRingEPRingHomR𝑠K
88 eqid BaseR𝑠K=BaseR𝑠K
89 3 88 rhmf EPRingHomR𝑠KE:BBaseR𝑠K
90 ffn E:BBaseR𝑠KEFnB
91 dffn3 EFnBE:BranE
92 91 biimpi EFnBE:BranE
93 87 89 90 92 4syl RCRingE:BranE
94 6 93 syl φE:BranE
95 94 8 ffvelcdmd φEFranE
96 2 rneqi ranE=raneval1R
97 95 96 eleqtrdi φEFraneval1R
98 4 9 10 11 56 72 73 74 75 76 77 78 79 83 85 97 pf1ind φEFJCnJ