Metamath Proof Explorer


Theorem pm2mpcl

Description: The transformation of polynomial matrices into polynomials over matrices maps polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P=Poly1R
pm2mpval.c C=NMatP
pm2mpval.b B=BaseC
pm2mpval.m ˙=Q
pm2mpval.e ×˙=mulGrpQ
pm2mpval.x X=var1A
pm2mpval.a A=NMatR
pm2mpval.q Q=Poly1A
pm2mpval.t T=NpMatToMatPolyR
pm2mpcl.l L=BaseQ
Assertion pm2mpcl NFinRRingMBTML

Proof

Step Hyp Ref Expression
1 pm2mpval.p P=Poly1R
2 pm2mpval.c C=NMatP
3 pm2mpval.b B=BaseC
4 pm2mpval.m ˙=Q
5 pm2mpval.e ×˙=mulGrpQ
6 pm2mpval.x X=var1A
7 pm2mpval.a A=NMatR
8 pm2mpval.q Q=Poly1A
9 pm2mpval.t T=NpMatToMatPolyR
10 pm2mpcl.l L=BaseQ
11 1 2 3 4 5 6 7 8 9 pm2mpfval NFinRRingMBTM=Qk0MdecompPMatk˙k×˙X
12 eqid 0Q=0Q
13 7 matring NFinRRingARing
14 8 ply1ring ARingQRing
15 ringcmn QRingQCMnd
16 13 14 15 3syl NFinRRingQCMnd
17 16 3adant3 NFinRRingMBQCMnd
18 nn0ex 0V
19 18 a1i NFinRRingMB0V
20 13 3adant3 NFinRRingMBARing
21 20 adantr NFinRRingMBk0ARing
22 simpl2 NFinRRingMBk0RRing
23 simpl3 NFinRRingMBk0MB
24 simpr NFinRRingMBk0k0
25 eqid BaseA=BaseA
26 1 2 3 7 25 decpmatcl RRingMBk0MdecompPMatkBaseA
27 22 23 24 26 syl3anc NFinRRingMBk0MdecompPMatkBaseA
28 eqid mulGrpQ=mulGrpQ
29 25 8 6 4 28 5 10 ply1tmcl ARingMdecompPMatkBaseAk0MdecompPMatk˙k×˙XL
30 21 27 24 29 syl3anc NFinRRingMBk0MdecompPMatk˙k×˙XL
31 30 fmpttd NFinRRingMBk0MdecompPMatk˙k×˙X:0L
32 8 ply1lmod ARingQLMod
33 20 32 syl NFinRRingMBQLMod
34 eqidd NFinRRingMBScalarQ=ScalarQ
35 8 6 28 5 10 ply1moncl ARingk0k×˙XL
36 20 35 sylan NFinRRingMBk0k×˙XL
37 eqid 0ScalarQ=0ScalarQ
38 eqid 0A=0A
39 1 2 3 7 38 decpmatfsupp RRingMBfinSupp0Ak0MdecompPMatk
40 39 3adant1 NFinRRingMBfinSupp0Ak0MdecompPMatk
41 8 ply1sca ARingA=ScalarQ
42 41 eqcomd ARingScalarQ=A
43 20 42 syl NFinRRingMBScalarQ=A
44 43 fveq2d NFinRRingMB0ScalarQ=0A
45 40 44 breqtrrd NFinRRingMBfinSupp0ScalarQk0MdecompPMatk
46 19 33 34 10 27 36 12 37 4 45 mptscmfsupp0 NFinRRingMBfinSupp0Qk0MdecompPMatk˙k×˙X
47 10 12 17 19 31 46 gsumcl NFinRRingMBQk0MdecompPMatk˙k×˙XL
48 11 47 eqeltrd NFinRRingMBTML