| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpval.p |
|
| 2 |
|
pm2mpval.c |
|
| 3 |
|
pm2mpval.b |
|
| 4 |
|
pm2mpval.m |
|
| 5 |
|
pm2mpval.e |
|
| 6 |
|
pm2mpval.x |
|
| 7 |
|
pm2mpval.a |
|
| 8 |
|
pm2mpval.q |
|
| 9 |
|
pm2mpval.t |
|
| 10 |
|
pm2mpcl.l |
|
| 11 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
|
| 12 |
|
eqid |
|
| 13 |
7
|
matring |
|
| 14 |
8
|
ply1ring |
|
| 15 |
|
ringcmn |
|
| 16 |
13 14 15
|
3syl |
|
| 17 |
16
|
3adant3 |
|
| 18 |
|
nn0ex |
|
| 19 |
18
|
a1i |
|
| 20 |
13
|
3adant3 |
|
| 21 |
20
|
adantr |
|
| 22 |
|
simpl2 |
|
| 23 |
|
simpl3 |
|
| 24 |
|
simpr |
|
| 25 |
|
eqid |
|
| 26 |
1 2 3 7 25
|
decpmatcl |
|
| 27 |
22 23 24 26
|
syl3anc |
|
| 28 |
|
eqid |
|
| 29 |
25 8 6 4 28 5 10
|
ply1tmcl |
|
| 30 |
21 27 24 29
|
syl3anc |
|
| 31 |
30
|
fmpttd |
|
| 32 |
8
|
ply1lmod |
|
| 33 |
20 32
|
syl |
|
| 34 |
|
eqidd |
|
| 35 |
8 6 28 5 10
|
ply1moncl |
|
| 36 |
20 35
|
sylan |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
1 2 3 7 38
|
decpmatfsupp |
|
| 40 |
39
|
3adant1 |
|
| 41 |
8
|
ply1sca |
|
| 42 |
41
|
eqcomd |
|
| 43 |
20 42
|
syl |
|
| 44 |
43
|
fveq2d |
|
| 45 |
40 44
|
breqtrrd |
|
| 46 |
19 33 34 10 27 36 12 37 4 45
|
mptscmfsupp0 |
|
| 47 |
10 12 17 19 31 46
|
gsumcl |
|
| 48 |
11 47
|
eqeltrd |
|