Metamath Proof Explorer


Theorem pmatcollpwlem

Description: Lemma for pmatcollpw . (Contributed by AV, 26-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P=Poly1R
pmatcollpw.c C=NMatP
pmatcollpw.b B=BaseC
pmatcollpw.m ˙=C
pmatcollpw.e ×˙=mulGrpP
pmatcollpw.x X=var1R
pmatcollpw.t T=NmatToPolyMatR
Assertion pmatcollpwlem NFinRCRingMBn0aNbNaMdecompPMatnbPn×˙X=an×˙X˙TMdecompPMatnb

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P=Poly1R
2 pmatcollpw.c C=NMatP
3 pmatcollpw.b B=BaseC
4 pmatcollpw.m ˙=C
5 pmatcollpw.e ×˙=mulGrpP
6 pmatcollpw.x X=var1R
7 pmatcollpw.t T=NmatToPolyMatR
8 1 ply1assa RCRingPAssAlg
9 8 3ad2ant2 NFinRCRingMBPAssAlg
10 9 adantr NFinRCRingMBn0PAssAlg
11 10 3ad2ant1 NFinRCRingMBn0aNbNPAssAlg
12 eqid NMatR=NMatR
13 eqid BaseR=BaseR
14 eqid BaseNMatR=BaseNMatR
15 simp2 NFinRCRingMBn0aNbNaN
16 simp3 NFinRCRingMBn0aNbNbN
17 simp2 NFinRCRingMBRCRing
18 17 adantr NFinRCRingMBn0RCRing
19 simp3 NFinRCRingMBMB
20 19 adantr NFinRCRingMBn0MB
21 simpr NFinRCRingMBn0n0
22 1 2 3 12 14 decpmatcl RCRingMBn0MdecompPMatnBaseNMatR
23 18 20 21 22 syl3anc NFinRCRingMBn0MdecompPMatnBaseNMatR
24 23 3ad2ant1 NFinRCRingMBn0aNbNMdecompPMatnBaseNMatR
25 12 13 14 15 16 24 matecld NFinRCRingMBn0aNbNaMdecompPMatnbBaseR
26 crngring RCRingRRing
27 26 3ad2ant2 NFinRCRingMBRRing
28 1 ply1sca RRingR=ScalarP
29 27 28 syl NFinRCRingMBR=ScalarP
30 29 eqcomd NFinRCRingMBScalarP=R
31 30 fveq2d NFinRCRingMBBaseScalarP=BaseR
32 31 eleq2d NFinRCRingMBaMdecompPMatnbBaseScalarPaMdecompPMatnbBaseR
33 32 adantr NFinRCRingMBn0aMdecompPMatnbBaseScalarPaMdecompPMatnbBaseR
34 33 3ad2ant1 NFinRCRingMBn0aNbNaMdecompPMatnbBaseScalarPaMdecompPMatnbBaseR
35 25 34 mpbird NFinRCRingMBn0aNbNaMdecompPMatnbBaseScalarP
36 eqid mulGrpP=mulGrpP
37 eqid BaseP=BaseP
38 1 6 36 5 37 ply1moncl RRingn0n×˙XBaseP
39 27 38 sylan NFinRCRingMBn0n×˙XBaseP
40 39 3ad2ant1 NFinRCRingMBn0aNbNn×˙XBaseP
41 eqid algScP=algScP
42 eqid ScalarP=ScalarP
43 eqid BaseScalarP=BaseScalarP
44 eqid P=P
45 eqid P=P
46 41 42 43 37 44 45 asclmul2 PAssAlgaMdecompPMatnbBaseScalarPn×˙XBasePn×˙XPalgScPaMdecompPMatnb=aMdecompPMatnbPn×˙X
47 11 35 40 46 syl3anc NFinRCRingMBn0aNbNn×˙XPalgScPaMdecompPMatnb=aMdecompPMatnbPn×˙X
48 eqidd NFinRCRingMBn0aNbNiN,jNalgScPiMdecompPMatnj=iN,jNalgScPiMdecompPMatnj
49 oveq12 i=aj=biMdecompPMatnj=aMdecompPMatnb
50 49 fveq2d i=aj=balgScPiMdecompPMatnj=algScPaMdecompPMatnb
51 50 adantl NFinRCRingMBn0aNbNi=aj=balgScPiMdecompPMatnj=algScPaMdecompPMatnb
52 fvexd NFinRCRingMBn0aNbNalgScPaMdecompPMatnbV
53 48 51 15 16 52 ovmpod NFinRCRingMBn0aNbNaiN,jNalgScPiMdecompPMatnjb=algScPaMdecompPMatnb
54 53 eqcomd NFinRCRingMBn0aNbNalgScPaMdecompPMatnb=aiN,jNalgScPiMdecompPMatnjb
55 54 oveq2d NFinRCRingMBn0aNbNn×˙XPalgScPaMdecompPMatnb=n×˙XPaiN,jNalgScPiMdecompPMatnjb
56 47 55 eqtr3d NFinRCRingMBn0aNbNaMdecompPMatnbPn×˙X=n×˙XPaiN,jNalgScPiMdecompPMatnjb
57 1 ply1ring RRingPRing
58 26 57 syl RCRingPRing
59 58 3ad2ant2 NFinRCRingMBPRing
60 59 adantr NFinRCRingMBn0PRing
61 60 3ad2ant1 NFinRCRingMBn0aNbNPRing
62 simpl1 NFinRCRingMBn0NFin
63 18 26 syl NFinRCRingMBn0RRing
64 63 3ad2ant1 NFinRCRingMBn0iNjNRRing
65 simp2 NFinRCRingMBn0iNjNiN
66 simp3 NFinRCRingMBn0iNjNjN
67 23 3ad2ant1 NFinRCRingMBn0iNjNMdecompPMatnBaseNMatR
68 12 13 14 65 66 67 matecld NFinRCRingMBn0iNjNiMdecompPMatnjBaseR
69 1 41 13 37 ply1sclcl RRingiMdecompPMatnjBaseRalgScPiMdecompPMatnjBaseP
70 64 68 69 syl2anc NFinRCRingMBn0iNjNalgScPiMdecompPMatnjBaseP
71 2 37 3 62 60 70 matbas2d NFinRCRingMBn0iN,jNalgScPiMdecompPMatnjB
72 39 71 jca NFinRCRingMBn0n×˙XBasePiN,jNalgScPiMdecompPMatnjB
73 72 3ad2ant1 NFinRCRingMBn0aNbNn×˙XBasePiN,jNalgScPiMdecompPMatnjB
74 15 16 jca NFinRCRingMBn0aNbNaNbN
75 2 3 37 4 44 matvscacell PRingn×˙XBasePiN,jNalgScPiMdecompPMatnjBaNbNan×˙X˙iN,jNalgScPiMdecompPMatnjb=n×˙XPaiN,jNalgScPiMdecompPMatnjb
76 61 73 74 75 syl3anc NFinRCRingMBn0aNbNan×˙X˙iN,jNalgScPiMdecompPMatnjb=n×˙XPaiN,jNalgScPiMdecompPMatnjb
77 27 adantr NFinRCRingMBn0RRing
78 7 12 14 1 41 mat2pmatval NFinRRingMdecompPMatnBaseNMatRTMdecompPMatn=iN,jNalgScPiMdecompPMatnj
79 62 77 23 78 syl3anc NFinRCRingMBn0TMdecompPMatn=iN,jNalgScPiMdecompPMatnj
80 79 eqcomd NFinRCRingMBn0iN,jNalgScPiMdecompPMatnj=TMdecompPMatn
81 80 oveq2d NFinRCRingMBn0n×˙X˙iN,jNalgScPiMdecompPMatnj=n×˙X˙TMdecompPMatn
82 81 oveqd NFinRCRingMBn0an×˙X˙iN,jNalgScPiMdecompPMatnjb=an×˙X˙TMdecompPMatnb
83 82 3ad2ant1 NFinRCRingMBn0aNbNan×˙X˙iN,jNalgScPiMdecompPMatnjb=an×˙X˙TMdecompPMatnb
84 56 76 83 3eqtr2d NFinRCRingMBn0aNbNaMdecompPMatnbPn×˙X=an×˙X˙TMdecompPMatnb