Metamath Proof Explorer


Theorem pmtrcnelor

Description: Composing a permutation F with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023)

Ref Expression
Hypotheses pmtrcnel.s S=SymGrpD
pmtrcnel.t T=pmTrspD
pmtrcnel.b B=BaseS
pmtrcnel.j J=FI
pmtrcnel.d φDV
pmtrcnel.f φFB
pmtrcnel.i φIdomFI
pmtrcnel.e E=domFI
pmtrcnel.a A=domTIJFI
Assertion pmtrcnelor φA=EIJA=EI

Proof

Step Hyp Ref Expression
1 pmtrcnel.s S=SymGrpD
2 pmtrcnel.t T=pmTrspD
3 pmtrcnel.b B=BaseS
4 pmtrcnel.j J=FI
5 pmtrcnel.d φDV
6 pmtrcnel.f φFB
7 pmtrcnel.i φIdomFI
8 pmtrcnel.e E=domFI
9 pmtrcnel.a A=domTIJFI
10 1 2 3 4 5 6 7 pmtrcnel φdomTIJFIdomFII
11 8 difeq1i EI=domFII
12 10 9 11 3sstr4g φAEI
13 12 ssdifd φAEIJEIEIJ
14 difpr EIJ=EIJ
15 14 difeq2i EIEIJ=EIEIJ
16 1 3 symgbasf1o FBF:D1-1 ontoD
17 6 16 syl φF:D1-1 ontoD
18 f1omvdmvd F:D1-1 ontoDIdomFIFIdomFII
19 17 7 18 syl2anc φFIdomFII
20 4 19 eqeltrid φJdomFII
21 20 eldifad φJdomFI
22 21 8 eleqtrrdi φJE
23 4 a1i φJ=FI
24 f1of F:D1-1 ontoDF:DD
25 17 24 syl φF:DD
26 25 ffnd φFFnD
27 difss FIF
28 dmss FIFdomFIdomF
29 27 28 ax-mp domFIdomF
30 29 7 sselid φIdomF
31 25 fdmd φdomF=D
32 30 31 eleqtrd φID
33 fnelnfp FFnDIDIdomFIFII
34 33 biimpa FFnDIDIdomFIFII
35 26 32 7 34 syl21anc φFII
36 23 35 eqnetrd φJI
37 eldifsn JEIJEJI
38 22 36 37 sylanbrc φJEI
39 38 snssd φJEI
40 dfss4 JEIEIEIJ=J
41 39 40 sylib φEIEIJ=J
42 15 41 eqtrid φEIEIJ=J
43 13 42 sseqtrd φAEIJJ
44 sssn AEIJJAEIJ=AEIJ=J
45 43 44 sylib φAEIJ=AEIJ=J
46 simpr φAEIJ=AEIJ=
47 1 2 3 4 5 6 7 pmtrcnel2 φdomFIIJdomTIJFI
48 8 difeq1i EIJ=domFIIJ
49 47 48 9 3sstr4g φEIJA
50 ssdif0 EIJAEIJA=
51 49 50 sylib φEIJA=
52 51 adantr φAEIJ=EIJA=
53 eqdif AEIJ=EIJA=A=EIJ
54 46 52 53 syl2anc φAEIJ=A=EIJ
55 54 ex φAEIJ=A=EIJ
56 12 adantr φAEIJ=JAEI
57 14 49 eqsstrrid φEIJA
58 57 adantr φAEIJ=JEIJA
59 ssundif EIJAEIJA
60 58 59 sylibr φAEIJ=JEIJA
61 ssidd φAEIJ=JJJ
62 simpr φAEIJ=JAEIJ=J
63 61 62 sseqtrrd φAEIJ=JJAEIJ
64 63 difss2d φAEIJ=JJA
65 ssequn1 JAJA=A
66 64 65 sylib φAEIJ=JJA=A
67 60 66 sseqtrd φAEIJ=JEIA
68 56 67 eqssd φAEIJ=JA=EI
69 68 ex φAEIJ=JA=EI
70 55 69 orim12d φAEIJ=AEIJ=JA=EIJA=EI
71 45 70 mpd φA=EIJA=EI