Metamath Proof Explorer


Theorem pmtrcnelor

Description: Composing a permutation F with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023)

Ref Expression
Hypotheses pmtrcnel.s S = SymGrp D
pmtrcnel.t T = pmTrsp D
pmtrcnel.b B = Base S
pmtrcnel.j J = F I
pmtrcnel.d φ D V
pmtrcnel.f φ F B
pmtrcnel.i φ I dom F I
pmtrcnel.e E = dom F I
pmtrcnel.a A = dom T I J F I
Assertion pmtrcnelor φ A = E I J A = E I

Proof

Step Hyp Ref Expression
1 pmtrcnel.s S = SymGrp D
2 pmtrcnel.t T = pmTrsp D
3 pmtrcnel.b B = Base S
4 pmtrcnel.j J = F I
5 pmtrcnel.d φ D V
6 pmtrcnel.f φ F B
7 pmtrcnel.i φ I dom F I
8 pmtrcnel.e E = dom F I
9 pmtrcnel.a A = dom T I J F I
10 1 2 3 4 5 6 7 pmtrcnel φ dom T I J F I dom F I I
11 8 difeq1i E I = dom F I I
12 10 9 11 3sstr4g φ A E I
13 12 ssdifd φ A E I J E I E I J
14 difpr E I J = E I J
15 14 difeq2i E I E I J = E I E I J
16 1 3 symgbasf1o F B F : D 1-1 onto D
17 6 16 syl φ F : D 1-1 onto D
18 f1omvdmvd F : D 1-1 onto D I dom F I F I dom F I I
19 17 7 18 syl2anc φ F I dom F I I
20 4 19 eqeltrid φ J dom F I I
21 20 eldifad φ J dom F I
22 21 8 eleqtrrdi φ J E
23 4 a1i φ J = F I
24 f1of F : D 1-1 onto D F : D D
25 17 24 syl φ F : D D
26 25 ffnd φ F Fn D
27 difss F I F
28 dmss F I F dom F I dom F
29 27 28 ax-mp dom F I dom F
30 29 7 sselid φ I dom F
31 25 fdmd φ dom F = D
32 30 31 eleqtrd φ I D
33 fnelnfp F Fn D I D I dom F I F I I
34 33 biimpa F Fn D I D I dom F I F I I
35 26 32 7 34 syl21anc φ F I I
36 23 35 eqnetrd φ J I
37 eldifsn J E I J E J I
38 22 36 37 sylanbrc φ J E I
39 38 snssd φ J E I
40 dfss4 J E I E I E I J = J
41 39 40 sylib φ E I E I J = J
42 15 41 eqtrid φ E I E I J = J
43 13 42 sseqtrd φ A E I J J
44 sssn A E I J J A E I J = A E I J = J
45 43 44 sylib φ A E I J = A E I J = J
46 simpr φ A E I J = A E I J =
47 1 2 3 4 5 6 7 pmtrcnel2 φ dom F I I J dom T I J F I
48 8 difeq1i E I J = dom F I I J
49 47 48 9 3sstr4g φ E I J A
50 ssdif0 E I J A E I J A =
51 49 50 sylib φ E I J A =
52 51 adantr φ A E I J = E I J A =
53 eqdif A E I J = E I J A = A = E I J
54 46 52 53 syl2anc φ A E I J = A = E I J
55 54 ex φ A E I J = A = E I J
56 12 adantr φ A E I J = J A E I
57 14 49 eqsstrrid φ E I J A
58 57 adantr φ A E I J = J E I J A
59 ssundif E I J A E I J A
60 58 59 sylibr φ A E I J = J E I J A
61 ssidd φ A E I J = J J J
62 simpr φ A E I J = J A E I J = J
63 61 62 sseqtrrd φ A E I J = J J A E I J
64 63 difss2d φ A E I J = J J A
65 ssequn1 J A J A = A
66 64 65 sylib φ A E I J = J J A = A
67 60 66 sseqtrd φ A E I J = J E I A
68 56 67 eqssd φ A E I J = J A = E I
69 68 ex φ A E I J = J A = E I
70 55 69 orim12d φ A E I J = A E I J = J A = E I J A = E I
71 45 70 mpd φ A = E I J A = E I