| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrcnel.s |
|
| 2 |
|
pmtrcnel.t |
|
| 3 |
|
pmtrcnel.b |
|
| 4 |
|
pmtrcnel.j |
|
| 5 |
|
pmtrcnel.d |
|
| 6 |
|
pmtrcnel.f |
|
| 7 |
|
pmtrcnel.i |
|
| 8 |
|
pmtrcnel.e |
|
| 9 |
|
pmtrcnel.a |
|
| 10 |
1 2 3 4 5 6 7
|
pmtrcnel |
|
| 11 |
8
|
difeq1i |
|
| 12 |
10 9 11
|
3sstr4g |
|
| 13 |
12
|
ssdifd |
|
| 14 |
|
difpr |
|
| 15 |
14
|
difeq2i |
|
| 16 |
1 3
|
symgbasf1o |
|
| 17 |
6 16
|
syl |
|
| 18 |
|
f1omvdmvd |
|
| 19 |
17 7 18
|
syl2anc |
|
| 20 |
4 19
|
eqeltrid |
|
| 21 |
20
|
eldifad |
|
| 22 |
21 8
|
eleqtrrdi |
|
| 23 |
4
|
a1i |
|
| 24 |
|
f1of |
|
| 25 |
17 24
|
syl |
|
| 26 |
25
|
ffnd |
|
| 27 |
|
difss |
|
| 28 |
|
dmss |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
29 7
|
sselid |
|
| 31 |
25
|
fdmd |
|
| 32 |
30 31
|
eleqtrd |
|
| 33 |
|
fnelnfp |
|
| 34 |
33
|
biimpa |
|
| 35 |
26 32 7 34
|
syl21anc |
|
| 36 |
23 35
|
eqnetrd |
|
| 37 |
|
eldifsn |
|
| 38 |
22 36 37
|
sylanbrc |
|
| 39 |
38
|
snssd |
|
| 40 |
|
dfss4 |
|
| 41 |
39 40
|
sylib |
|
| 42 |
15 41
|
eqtrid |
|
| 43 |
13 42
|
sseqtrd |
|
| 44 |
|
sssn |
|
| 45 |
43 44
|
sylib |
|
| 46 |
|
simpr |
|
| 47 |
1 2 3 4 5 6 7
|
pmtrcnel2 |
|
| 48 |
8
|
difeq1i |
|
| 49 |
47 48 9
|
3sstr4g |
|
| 50 |
|
ssdif0 |
|
| 51 |
49 50
|
sylib |
|
| 52 |
51
|
adantr |
|
| 53 |
|
eqdif |
|
| 54 |
46 52 53
|
syl2anc |
|
| 55 |
54
|
ex |
|
| 56 |
12
|
adantr |
|
| 57 |
14 49
|
eqsstrrid |
|
| 58 |
57
|
adantr |
|
| 59 |
|
ssundif |
|
| 60 |
58 59
|
sylibr |
|
| 61 |
|
ssidd |
|
| 62 |
|
simpr |
|
| 63 |
61 62
|
sseqtrrd |
|
| 64 |
63
|
difss2d |
|
| 65 |
|
ssequn1 |
|
| 66 |
64 65
|
sylib |
|
| 67 |
60 66
|
sseqtrd |
|
| 68 |
56 67
|
eqssd |
|
| 69 |
68
|
ex |
|
| 70 |
55 69
|
orim12d |
|
| 71 |
45 70
|
mpd |
|