Metamath Proof Explorer


Theorem pnfnei

Description: A neighborhood of +oo contains an unbounded interval based at a real number. Together with xrtgioo (which describes neighborhoods of RR ) and mnfnei , this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion pnfnei AordTop+∞Axx+∞A

Proof

Step Hyp Ref Expression
1 eqid rany*y+∞=rany*y+∞
2 eqid rany*−∞y=rany*−∞y
3 eqid ran.=ran.
4 1 2 3 leordtval ordTop=topGenrany*y+∞rany*−∞yran.
5 4 eleq2i AordTopAtopGenrany*y+∞rany*−∞yran.
6 tg2 AtopGenrany*y+∞rany*−∞yran.+∞Aurany*y+∞rany*−∞yran.+∞uuA
7 elun urany*y+∞rany*−∞yran.urany*y+∞rany*−∞yuran.
8 elun urany*y+∞rany*−∞yurany*y+∞urany*−∞y
9 eqid y*y+∞=y*y+∞
10 9 elrnmpt uVurany*y+∞y*u=y+∞
11 10 elv urany*y+∞y*u=y+∞
12 mnfxr −∞*
13 12 a1i +∞uuAy*u=y+∞−∞*
14 simprl +∞uuAy*u=y+∞y*
15 0xr 0*
16 ifcl y*0*if0yy0*
17 14 15 16 sylancl +∞uuAy*u=y+∞if0yy0*
18 pnfxr +∞*
19 18 a1i +∞uuAy*u=y+∞+∞*
20 xrmax1 0*y*0if0yy0
21 15 14 20 sylancr +∞uuAy*u=y+∞0if0yy0
22 ge0gtmnf if0yy0*0if0yy0−∞<if0yy0
23 17 21 22 syl2anc +∞uuAy*u=y+∞−∞<if0yy0
24 simpll +∞uuAy*u=y+∞+∞u
25 simprr +∞uuAy*u=y+∞u=y+∞
26 24 25 eleqtrd +∞uuAy*u=y+∞+∞y+∞
27 elioc1 y*+∞*+∞y+∞+∞*y<+∞+∞+∞
28 14 18 27 sylancl +∞uuAy*u=y+∞+∞y+∞+∞*y<+∞+∞+∞
29 26 28 mpbid +∞uuAy*u=y+∞+∞*y<+∞+∞+∞
30 29 simp2d +∞uuAy*u=y+∞y<+∞
31 0ltpnf 0<+∞
32 breq1 y=if0yy0y<+∞if0yy0<+∞
33 breq1 0=if0yy00<+∞if0yy0<+∞
34 32 33 ifboth y<+∞0<+∞if0yy0<+∞
35 30 31 34 sylancl +∞uuAy*u=y+∞if0yy0<+∞
36 xrre2 −∞*if0yy0*+∞*−∞<if0yy0if0yy0<+∞if0yy0
37 13 17 19 23 35 36 syl32anc +∞uuAy*u=y+∞if0yy0
38 xrmax2 0*y*yif0yy0
39 15 14 38 sylancr +∞uuAy*u=y+∞yif0yy0
40 df-ioc .=a*,b*c*|a<ccb
41 xrlelttr y*if0yy0*x*yif0yy0if0yy0<xy<x
42 40 40 41 ixxss1 y*yif0yy0if0yy0+∞y+∞
43 14 39 42 syl2anc +∞uuAy*u=y+∞if0yy0+∞y+∞
44 simplr +∞uuAy*u=y+∞uA
45 25 44 eqsstrrd +∞uuAy*u=y+∞y+∞A
46 43 45 sstrd +∞uuAy*u=y+∞if0yy0+∞A
47 oveq1 x=if0yy0x+∞=if0yy0+∞
48 47 sseq1d x=if0yy0x+∞Aif0yy0+∞A
49 48 rspcev if0yy0if0yy0+∞Axx+∞A
50 37 46 49 syl2anc +∞uuAy*u=y+∞xx+∞A
51 50 rexlimdvaa +∞uuAy*u=y+∞xx+∞A
52 51 com12 y*u=y+∞+∞uuAxx+∞A
53 11 52 sylbi urany*y+∞+∞uuAxx+∞A
54 eqid y*−∞y=y*−∞y
55 54 elrnmpt uVurany*−∞yy*u=−∞y
56 55 elv urany*−∞yy*u=−∞y
57 pnfnlt y*¬+∞<y
58 elico1 −∞*y*+∞−∞y+∞*−∞+∞+∞<y
59 12 58 mpan y*+∞−∞y+∞*−∞+∞+∞<y
60 simp3 +∞*−∞+∞+∞<y+∞<y
61 59 60 syl6bi y*+∞−∞y+∞<y
62 57 61 mtod y*¬+∞−∞y
63 eleq2 u=−∞y+∞u+∞−∞y
64 63 notbid u=−∞y¬+∞u¬+∞−∞y
65 62 64 syl5ibrcom y*u=−∞y¬+∞u
66 65 rexlimiv y*u=−∞y¬+∞u
67 66 pm2.21d y*u=−∞y+∞uxx+∞A
68 67 adantrd y*u=−∞y+∞uuAxx+∞A
69 56 68 sylbi urany*−∞y+∞uuAxx+∞A
70 53 69 jaoi urany*y+∞urany*−∞y+∞uuAxx+∞A
71 8 70 sylbi urany*y+∞rany*−∞y+∞uuAxx+∞A
72 pnfnre +∞
73 72 neli ¬+∞
74 elssuni uran.uran.
75 unirnioo =ran.
76 74 75 sseqtrrdi uran.u
77 76 sseld uran.+∞u+∞
78 73 77 mtoi uran.¬+∞u
79 78 pm2.21d uran.+∞uxx+∞A
80 79 adantrd uran.+∞uuAxx+∞A
81 71 80 jaoi urany*y+∞rany*−∞yuran.+∞uuAxx+∞A
82 7 81 sylbi urany*y+∞rany*−∞yran.+∞uuAxx+∞A
83 82 rexlimiv urany*y+∞rany*−∞yran.+∞uuAxx+∞A
84 6 83 syl AtopGenrany*y+∞rany*−∞yran.+∞Axx+∞A
85 5 84 sylanb AordTop+∞Axx+∞A