Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordering on Cartesian products
poxp3
Next ⟩
frxp3
Metamath Proof Explorer
Ascii
Unicode
Theorem
poxp3
Description:
Triple Cartesian product partial ordering.
(Contributed by
Scott Fenton
, 21-Aug-2024)
Ref
Expression
Hypotheses
xpord3.1
⊢
U
=
x
y
|
x
∈
A
×
B
×
C
∧
y
∈
A
×
B
×
C
∧
1
st
1
st
x
R
1
st
1
st
y
∨
1
st
1
st
x
=
1
st
1
st
y
∧
2
nd
1
st
x
S
2
nd
1
st
y
∨
2
nd
1
st
x
=
2
nd
1
st
y
∧
2
nd
x
T
2
nd
y
∨
2
nd
x
=
2
nd
y
∧
x
≠
y
poxp3.1
⊢
φ
→
R
Po
A
poxp3.2
⊢
φ
→
S
Po
B
poxp3.3
⊢
φ
→
T
Po
C
Assertion
poxp3
⊢
φ
→
U
Po
A
×
B
×
C
Proof
Step
Hyp
Ref
Expression
1
xpord3.1
⊢
U
=
x
y
|
x
∈
A
×
B
×
C
∧
y
∈
A
×
B
×
C
∧
1
st
1
st
x
R
1
st
1
st
y
∨
1
st
1
st
x
=
1
st
1
st
y
∧
2
nd
1
st
x
S
2
nd
1
st
y
∨
2
nd
1
st
x
=
2
nd
1
st
y
∧
2
nd
x
T
2
nd
y
∨
2
nd
x
=
2
nd
y
∧
x
≠
y
2
poxp3.1
⊢
φ
→
R
Po
A
3
poxp3.2
⊢
φ
→
S
Po
B
4
poxp3.3
⊢
φ
→
T
Po
C
5
el2xptp
⊢
p
∈
A
×
B
×
C
↔
∃
a
∈
A
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
6
neirr
⊢
¬
a
≠
a
7
neirr
⊢
¬
b
≠
b
8
neirr
⊢
¬
c
≠
c
9
6
7
8
3pm3.2ni
⊢
¬
a
≠
a
∨
b
≠
b
∨
c
≠
c
10
9
intnan
⊢
¬
a
R
a
∨
a
=
a
∧
b
S
b
∨
b
=
b
∧
c
T
c
∨
c
=
c
∧
a
≠
a
∨
b
≠
b
∨
c
≠
c
11
simp3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
a
R
a
∨
a
=
a
∧
b
S
b
∨
b
=
b
∧
c
T
c
∨
c
=
c
∧
a
≠
a
∨
b
≠
b
∨
c
≠
c
→
a
R
a
∨
a
=
a
∧
b
S
b
∨
b
=
b
∧
c
T
c
∨
c
=
c
∧
a
≠
a
∨
b
≠
b
∨
c
≠
c
12
10
11
mto
⊢
¬
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
a
R
a
∨
a
=
a
∧
b
S
b
∨
b
=
b
∧
c
T
c
∨
c
=
c
∧
a
≠
a
∨
b
≠
b
∨
c
≠
c
13
breq12
⊢
p
=
a
b
c
∧
p
=
a
b
c
→
p
U
p
↔
a
b
c
U
a
b
c
14
13
anidms
⊢
p
=
a
b
c
→
p
U
p
↔
a
b
c
U
a
b
c
15
1
xpord3lem
⊢
a
b
c
U
a
b
c
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
a
R
a
∨
a
=
a
∧
b
S
b
∨
b
=
b
∧
c
T
c
∨
c
=
c
∧
a
≠
a
∨
b
≠
b
∨
c
≠
c
16
14
15
bitrdi
⊢
p
=
a
b
c
→
p
U
p
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
a
R
a
∨
a
=
a
∧
b
S
b
∨
b
=
b
∧
c
T
c
∨
c
=
c
∧
a
≠
a
∨
b
≠
b
∨
c
≠
c
17
12
16
mtbiri
⊢
p
=
a
b
c
→
¬
p
U
p
18
17
rexlimivw
⊢
∃
c
∈
C
p
=
a
b
c
→
¬
p
U
p
19
18
rexlimivw
⊢
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
→
¬
p
U
p
20
19
rexlimivw
⊢
∃
a
∈
A
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
→
¬
p
U
p
21
5
20
sylbi
⊢
p
∈
A
×
B
×
C
→
¬
p
U
p
22
21
adantl
⊢
φ
∧
p
∈
A
×
B
×
C
→
¬
p
U
p
23
3reeanv
⊢
∃
a
∈
A
∃
d
∈
A
∃
g
∈
A
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
e
∈
B
∃
f
∈
C
q
=
d
e
f
∧
∃
h
∈
B
∃
i
∈
C
r
=
g
h
i
↔
∃
a
∈
A
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
d
∈
A
∃
e
∈
B
∃
f
∈
C
q
=
d
e
f
∧
∃
g
∈
A
∃
h
∈
B
∃
i
∈
C
r
=
g
h
i
24
3reeanv
⊢
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
↔
∃
c
∈
C
p
=
a
b
c
∧
∃
f
∈
C
q
=
d
e
f
∧
∃
i
∈
C
r
=
g
h
i
25
24
rexbii
⊢
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
↔
∃
h
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
f
∈
C
q
=
d
e
f
∧
∃
i
∈
C
r
=
g
h
i
26
25
2rexbii
⊢
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
↔
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
f
∈
C
q
=
d
e
f
∧
∃
i
∈
C
r
=
g
h
i
27
3reeanv
⊢
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
f
∈
C
q
=
d
e
f
∧
∃
i
∈
C
r
=
g
h
i
↔
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
e
∈
B
∃
f
∈
C
q
=
d
e
f
∧
∃
h
∈
B
∃
i
∈
C
r
=
g
h
i
28
26
27
bitri
⊢
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
↔
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
e
∈
B
∃
f
∈
C
q
=
d
e
f
∧
∃
h
∈
B
∃
i
∈
C
r
=
g
h
i
29
28
rexbii
⊢
∃
g
∈
A
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
↔
∃
g
∈
A
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
e
∈
B
∃
f
∈
C
q
=
d
e
f
∧
∃
h
∈
B
∃
i
∈
C
r
=
g
h
i
30
29
2rexbii
⊢
∃
a
∈
A
∃
d
∈
A
∃
g
∈
A
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
↔
∃
a
∈
A
∃
d
∈
A
∃
g
∈
A
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
e
∈
B
∃
f
∈
C
q
=
d
e
f
∧
∃
h
∈
B
∃
i
∈
C
r
=
g
h
i
31
el2xptp
⊢
q
∈
A
×
B
×
C
↔
∃
d
∈
A
∃
e
∈
B
∃
f
∈
C
q
=
d
e
f
32
el2xptp
⊢
r
∈
A
×
B
×
C
↔
∃
g
∈
A
∃
h
∈
B
∃
i
∈
C
r
=
g
h
i
33
5
31
32
3anbi123i
⊢
p
∈
A
×
B
×
C
∧
q
∈
A
×
B
×
C
∧
r
∈
A
×
B
×
C
↔
∃
a
∈
A
∃
b
∈
B
∃
c
∈
C
p
=
a
b
c
∧
∃
d
∈
A
∃
e
∈
B
∃
f
∈
C
q
=
d
e
f
∧
∃
g
∈
A
∃
h
∈
B
∃
i
∈
C
r
=
g
h
i
34
23
30
33
3bitr4ri
⊢
p
∈
A
×
B
×
C
∧
q
∈
A
×
B
×
C
∧
r
∈
A
×
B
×
C
↔
∃
a
∈
A
∃
d
∈
A
∃
g
∈
A
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
35
simpr1l
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
∈
A
∧
b
∈
B
∧
c
∈
C
36
simpr2r
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
g
∈
A
∧
h
∈
B
∧
i
∈
C
37
simp1l1
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
∈
A
38
simp2l1
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
∈
A
39
simp2r1
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
g
∈
A
40
37
38
39
3jca
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
∈
A
∧
d
∈
A
∧
g
∈
A
41
potr
⊢
R
Po
A
∧
a
∈
A
∧
d
∈
A
∧
g
∈
A
→
a
R
d
∧
d
R
g
→
a
R
g
42
2
40
41
syl2an
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
R
d
∧
d
R
g
→
a
R
g
43
42
expd
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
R
d
→
d
R
g
→
a
R
g
44
breq1
⊢
a
=
d
→
a
R
g
↔
d
R
g
45
44
biimprd
⊢
a
=
d
→
d
R
g
→
a
R
g
46
45
a1i
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
=
d
→
d
R
g
→
a
R
g
47
simpll1
⊢
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
R
d
∨
a
=
d
48
47
3ad2ant3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
R
d
∨
a
=
d
49
48
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
R
d
∨
a
=
d
50
43
46
49
mpjaod
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
R
g
→
a
R
g
51
orc
⊢
a
R
g
→
a
R
g
∨
a
=
g
52
50
51
syl6
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
R
g
→
a
R
g
∨
a
=
g
53
breq2
⊢
d
=
g
→
a
R
d
↔
a
R
g
54
equequ2
⊢
d
=
g
→
a
=
d
↔
a
=
g
55
53
54
orbi12d
⊢
d
=
g
→
a
R
d
∨
a
=
d
↔
a
R
g
∨
a
=
g
56
49
55
syl5ibcom
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
=
g
→
a
R
g
∨
a
=
g
57
simprl1
⊢
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
R
g
∨
d
=
g
58
57
3ad2ant3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
R
g
∨
d
=
g
59
58
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
R
g
∨
d
=
g
60
52
56
59
mpjaod
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
R
g
∨
a
=
g
61
simp1l2
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
∈
B
62
simp2l2
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
∈
B
63
simp2r2
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
h
∈
B
64
61
62
63
3jca
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
∈
B
∧
e
∈
B
∧
h
∈
B
65
potr
⊢
S
Po
B
∧
b
∈
B
∧
e
∈
B
∧
h
∈
B
→
b
S
e
∧
e
S
h
→
b
S
h
66
3
64
65
syl2an
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
S
e
∧
e
S
h
→
b
S
h
67
66
expd
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
S
e
→
e
S
h
→
b
S
h
68
breq1
⊢
b
=
e
→
b
S
h
↔
e
S
h
69
68
biimprd
⊢
b
=
e
→
e
S
h
→
b
S
h
70
69
a1i
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
=
e
→
e
S
h
→
b
S
h
71
simpll2
⊢
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
S
e
∨
b
=
e
72
71
3ad2ant3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
S
e
∨
b
=
e
73
72
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
S
e
∨
b
=
e
74
67
70
73
mpjaod
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
S
h
→
b
S
h
75
orc
⊢
b
S
h
→
b
S
h
∨
b
=
h
76
74
75
syl6
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
S
h
→
b
S
h
∨
b
=
h
77
breq2
⊢
e
=
h
→
b
S
e
↔
b
S
h
78
equequ2
⊢
e
=
h
→
b
=
e
↔
b
=
h
79
77
78
orbi12d
⊢
e
=
h
→
b
S
e
∨
b
=
e
↔
b
S
h
∨
b
=
h
80
73
79
syl5ibcom
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
=
h
→
b
S
h
∨
b
=
h
81
simprl2
⊢
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
S
h
∨
e
=
h
82
81
3ad2ant3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
S
h
∨
e
=
h
83
82
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
S
h
∨
e
=
h
84
76
80
83
mpjaod
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
S
h
∨
b
=
h
85
simp1l3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
∈
C
86
simp2l3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
∈
C
87
simp2r3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
i
∈
C
88
85
86
87
3jca
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
∈
C
∧
f
∈
C
∧
i
∈
C
89
potr
⊢
T
Po
C
∧
c
∈
C
∧
f
∈
C
∧
i
∈
C
→
c
T
f
∧
f
T
i
→
c
T
i
90
4
88
89
syl2an
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
T
f
∧
f
T
i
→
c
T
i
91
90
expd
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
T
f
→
f
T
i
→
c
T
i
92
breq1
⊢
c
=
f
→
c
T
i
↔
f
T
i
93
92
biimprd
⊢
c
=
f
→
f
T
i
→
c
T
i
94
93
a1i
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
=
f
→
f
T
i
→
c
T
i
95
simpll3
⊢
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
T
f
∨
c
=
f
96
95
3ad2ant3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
T
f
∨
c
=
f
97
96
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
T
f
∨
c
=
f
98
91
94
97
mpjaod
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
T
i
→
c
T
i
99
orc
⊢
c
T
i
→
c
T
i
∨
c
=
i
100
98
99
syl6
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
T
i
→
c
T
i
∨
c
=
i
101
breq2
⊢
f
=
i
→
c
T
f
↔
c
T
i
102
equequ2
⊢
f
=
i
→
c
=
f
↔
c
=
i
103
101
102
orbi12d
⊢
f
=
i
→
c
T
f
∨
c
=
f
↔
c
T
i
∨
c
=
i
104
97
103
syl5ibcom
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
=
i
→
c
T
i
∨
c
=
i
105
simprl3
⊢
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
T
i
∨
f
=
i
106
105
3ad2ant3
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
T
i
∨
f
=
i
107
106
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
T
i
∨
f
=
i
108
100
104
107
mpjaod
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
T
i
∨
c
=
i
109
60
84
108
3jca
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
R
g
∨
a
=
g
∧
b
S
h
∨
b
=
h
∧
c
T
i
∨
c
=
i
110
simp3rr
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
≠
g
∨
e
≠
h
∨
f
≠
i
111
110
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
≠
g
∨
e
≠
h
∨
f
≠
i
112
59
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
a
=
g
→
d
R
g
∨
d
=
g
113
breq1
⊢
a
=
g
→
a
R
d
↔
g
R
d
114
equequ1
⊢
a
=
g
→
a
=
d
↔
g
=
d
115
equcom
⊢
g
=
d
↔
d
=
g
116
114
115
bitrdi
⊢
a
=
g
→
a
=
d
↔
d
=
g
117
113
116
orbi12d
⊢
a
=
g
→
a
R
d
∨
a
=
d
↔
g
R
d
∨
d
=
g
118
49
117
syl5ibcom
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
=
g
→
g
R
d
∨
d
=
g
119
118
imp
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
a
=
g
→
g
R
d
∨
d
=
g
120
ordir
⊢
d
R
g
∧
g
R
d
∨
d
=
g
↔
d
R
g
∨
d
=
g
∧
g
R
d
∨
d
=
g
121
112
119
120
sylanbrc
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
a
=
g
→
d
R
g
∧
g
R
d
∨
d
=
g
122
2
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
R
Po
A
123
38
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
∈
A
124
39
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
g
∈
A
125
po2nr
⊢
R
Po
A
∧
d
∈
A
∧
g
∈
A
→
¬
d
R
g
∧
g
R
d
126
122
123
124
125
syl12anc
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
¬
d
R
g
∧
g
R
d
127
126
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
a
=
g
→
¬
d
R
g
∧
g
R
d
128
121
127
orcnd
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
a
=
g
→
d
=
g
129
128
ex
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
=
g
→
d
=
g
130
129
necon3d
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
≠
g
→
a
≠
g
131
83
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
b
=
h
→
e
S
h
∨
e
=
h
132
breq1
⊢
b
=
h
→
b
S
e
↔
h
S
e
133
equequ1
⊢
b
=
h
→
b
=
e
↔
h
=
e
134
equcom
⊢
h
=
e
↔
e
=
h
135
133
134
bitrdi
⊢
b
=
h
→
b
=
e
↔
e
=
h
136
132
135
orbi12d
⊢
b
=
h
→
b
S
e
∨
b
=
e
↔
h
S
e
∨
e
=
h
137
73
136
syl5ibcom
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
=
h
→
h
S
e
∨
e
=
h
138
137
imp
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
b
=
h
→
h
S
e
∨
e
=
h
139
ordir
⊢
e
S
h
∧
h
S
e
∨
e
=
h
↔
e
S
h
∨
e
=
h
∧
h
S
e
∨
e
=
h
140
131
138
139
sylanbrc
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
b
=
h
→
e
S
h
∧
h
S
e
∨
e
=
h
141
3
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
S
Po
B
142
62
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
∈
B
143
63
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
h
∈
B
144
po2nr
⊢
S
Po
B
∧
e
∈
B
∧
h
∈
B
→
¬
e
S
h
∧
h
S
e
145
141
142
143
144
syl12anc
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
¬
e
S
h
∧
h
S
e
146
145
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
b
=
h
→
¬
e
S
h
∧
h
S
e
147
140
146
orcnd
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
b
=
h
→
e
=
h
148
147
ex
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
b
=
h
→
e
=
h
149
148
necon3d
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
e
≠
h
→
b
≠
h
150
107
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
c
=
i
→
f
T
i
∨
f
=
i
151
breq1
⊢
c
=
i
→
c
T
f
↔
i
T
f
152
equequ1
⊢
c
=
i
→
c
=
f
↔
i
=
f
153
equcom
⊢
i
=
f
↔
f
=
i
154
152
153
bitrdi
⊢
c
=
i
→
c
=
f
↔
f
=
i
155
151
154
orbi12d
⊢
c
=
i
→
c
T
f
∨
c
=
f
↔
i
T
f
∨
f
=
i
156
97
155
syl5ibcom
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
=
i
→
i
T
f
∨
f
=
i
157
156
imp
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
c
=
i
→
i
T
f
∨
f
=
i
158
ordir
⊢
f
T
i
∧
i
T
f
∨
f
=
i
↔
f
T
i
∨
f
=
i
∧
i
T
f
∨
f
=
i
159
150
157
158
sylanbrc
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
c
=
i
→
f
T
i
∧
i
T
f
∨
f
=
i
160
4
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
T
Po
C
161
86
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
∈
C
162
87
adantl
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
i
∈
C
163
po2nr
⊢
T
Po
C
∧
f
∈
C
∧
i
∈
C
→
¬
f
T
i
∧
i
T
f
164
160
161
162
163
syl12anc
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
¬
f
T
i
∧
i
T
f
165
164
adantr
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
c
=
i
→
¬
f
T
i
∧
i
T
f
166
159
165
orcnd
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
∧
c
=
i
→
f
=
i
167
166
ex
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
c
=
i
→
f
=
i
168
167
necon3d
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
f
≠
i
→
c
≠
i
169
130
149
168
3orim123d
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
≠
g
∨
b
≠
h
∨
c
≠
i
170
111
169
mpd
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
≠
g
∨
b
≠
h
∨
c
≠
i
171
109
170
jca
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
R
g
∨
a
=
g
∧
b
S
h
∨
b
=
h
∧
c
T
i
∨
c
=
i
∧
a
≠
g
∨
b
≠
h
∨
c
≠
i
172
35
36
171
3jca
⊢
φ
∧
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
g
∨
a
=
g
∧
b
S
h
∨
b
=
h
∧
c
T
i
∨
c
=
i
∧
a
≠
g
∨
b
≠
h
∨
c
≠
i
173
172
ex
⊢
φ
→
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
g
∨
a
=
g
∧
b
S
h
∨
b
=
h
∧
c
T
i
∨
c
=
i
∧
a
≠
g
∨
b
≠
h
∨
c
≠
i
174
breq12
⊢
p
=
a
b
c
∧
q
=
d
e
f
→
p
U
q
↔
a
b
c
U
d
e
f
175
174
3adant3
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
↔
a
b
c
U
d
e
f
176
1
xpord3lem
⊢
a
b
c
U
d
e
f
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
177
175
176
bitrdi
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
178
breq12
⊢
q
=
d
e
f
∧
r
=
g
h
i
→
q
U
r
↔
d
e
f
U
g
h
i
179
178
3adant1
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
q
U
r
↔
d
e
f
U
g
h
i
180
1
xpord3lem
⊢
d
e
f
U
g
h
i
↔
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
181
179
180
bitrdi
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
q
U
r
↔
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
182
177
181
anbi12d
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
183
an6
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
184
182
183
bitrdi
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
185
breq12
⊢
p
=
a
b
c
∧
r
=
g
h
i
→
p
U
r
↔
a
b
c
U
g
h
i
186
185
3adant2
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
r
↔
a
b
c
U
g
h
i
187
1
xpord3lem
⊢
a
b
c
U
g
h
i
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
g
∨
a
=
g
∧
b
S
h
∨
b
=
h
∧
c
T
i
∨
c
=
i
∧
a
≠
g
∨
b
≠
h
∨
c
≠
i
188
186
187
bitrdi
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
r
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
g
∨
a
=
g
∧
b
S
h
∨
b
=
h
∧
c
T
i
∨
c
=
i
∧
a
≠
g
∨
b
≠
h
∨
c
≠
i
189
184
188
imbi12d
⊢
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
↔
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
d
∈
A
∧
e
∈
B
∧
f
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
d
∨
a
=
d
∧
b
S
e
∨
b
=
e
∧
c
T
f
∨
c
=
f
∧
a
≠
d
∨
b
≠
e
∨
c
≠
f
∧
d
R
g
∨
d
=
g
∧
e
S
h
∨
e
=
h
∧
f
T
i
∨
f
=
i
∧
d
≠
g
∨
e
≠
h
∨
f
≠
i
→
a
∈
A
∧
b
∈
B
∧
c
∈
C
∧
g
∈
A
∧
h
∈
B
∧
i
∈
C
∧
a
R
g
∨
a
=
g
∧
b
S
h
∨
b
=
h
∧
c
T
i
∨
c
=
i
∧
a
≠
g
∨
b
≠
h
∨
c
≠
i
190
173
189
syl5ibrcom
⊢
φ
→
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
191
190
rexlimdvw
⊢
φ
→
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
192
191
rexlimdvw
⊢
φ
→
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
193
192
rexlimdvw
⊢
φ
→
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
194
193
rexlimdvw
⊢
φ
→
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
195
194
rexlimdvw
⊢
φ
→
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
196
195
rexlimdvw
⊢
φ
→
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
197
196
rexlimdvw
⊢
φ
→
∃
g
∈
A
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
198
197
rexlimdvw
⊢
φ
→
∃
d
∈
A
∃
g
∈
A
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
199
198
rexlimdvw
⊢
φ
→
∃
a
∈
A
∃
d
∈
A
∃
g
∈
A
∃
b
∈
B
∃
e
∈
B
∃
h
∈
B
∃
c
∈
C
∃
f
∈
C
∃
i
∈
C
p
=
a
b
c
∧
q
=
d
e
f
∧
r
=
g
h
i
→
p
U
q
∧
q
U
r
→
p
U
r
200
34
199
biimtrid
⊢
φ
→
p
∈
A
×
B
×
C
∧
q
∈
A
×
B
×
C
∧
r
∈
A
×
B
×
C
→
p
U
q
∧
q
U
r
→
p
U
r
201
200
imp
⊢
φ
∧
p
∈
A
×
B
×
C
∧
q
∈
A
×
B
×
C
∧
r
∈
A
×
B
×
C
→
p
U
q
∧
q
U
r
→
p
U
r
202
22
201
ispod
⊢
φ
→
U
Po
A
×
B
×
C