Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|
2 |
|
eqid |
|
3 |
|
fzfid |
|
4 |
|
eqidd |
|
5 |
|
eleq1 |
|
6 |
|
id |
|
7 |
5 6
|
ifbieq1d |
|
8 |
7
|
adantl |
|
9 |
|
elfznn |
|
10 |
9
|
adantl |
|
11 |
|
1nn |
|
12 |
11
|
a1i |
|
13 |
9 12
|
ifcld |
|
14 |
13
|
adantl |
|
15 |
4 8 10 14
|
fvmptd |
|
16 |
15 14
|
eqeltrd |
|
17 |
3 16
|
fprodnncl |
|
18 |
2 17
|
fmpti |
|
19 |
|
nnex |
|
20 |
19 19
|
elmap |
|
21 |
18 20
|
mpbir |
|
22 |
21
|
a1i |
|
23 |
|
prmgapprmolem |
|
24 |
|
eqidd |
|
25 |
7
|
adantl |
|
26 |
9
|
adantl |
|
27 |
|
elfzelz |
|
28 |
|
1zzd |
|
29 |
27 28
|
ifcld |
|
30 |
29
|
adantl |
|
31 |
24 25 26 30
|
fvmptd |
|
32 |
31
|
prodeq2dv |
|
33 |
32
|
mpteq2dva |
|
34 |
|
oveq2 |
|
35 |
34
|
prodeq1d |
|
36 |
35
|
adantl |
|
37 |
|
simpl |
|
38 |
|
fzfid |
|
39 |
|
elfznn |
|
40 |
11
|
a1i |
|
41 |
39 40
|
ifcld |
|
42 |
41
|
adantl |
|
43 |
38 42
|
fprodnncl |
|
44 |
33 36 37 43
|
fvmptd |
|
45 |
|
nnnn0 |
|
46 |
|
prmoval |
|
47 |
45 46
|
syl |
|
48 |
47
|
eqcomd |
|
49 |
48
|
adantr |
|
50 |
44 49
|
eqtrd |
|
51 |
50
|
oveq1d |
|
52 |
51
|
oveq1d |
|
53 |
23 52
|
breqtrrd |
|
54 |
53
|
ralrimiva |
|
55 |
1 22 54
|
prmgaplem8 |
|
56 |
55
|
rgen |
|