Description: Alternate proof of prmgap : in contrast to prmgap , where the gap starts at n! , the factorial of n, the gap starts at n#, the primorial of n. (Contributed by AV, 15-Aug-2020) (Revised by AV, 29-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | prmgapprmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | eqid | |
|
3 | fzfid | |
|
4 | eqidd | |
|
5 | eleq1 | |
|
6 | id | |
|
7 | 5 6 | ifbieq1d | |
8 | 7 | adantl | |
9 | elfznn | |
|
10 | 9 | adantl | |
11 | 1nn | |
|
12 | 11 | a1i | |
13 | 9 12 | ifcld | |
14 | 13 | adantl | |
15 | 4 8 10 14 | fvmptd | |
16 | 15 14 | eqeltrd | |
17 | 3 16 | fprodnncl | |
18 | 2 17 | fmpti | |
19 | nnex | |
|
20 | 19 19 | elmap | |
21 | 18 20 | mpbir | |
22 | 21 | a1i | |
23 | prmgapprmolem | |
|
24 | eqidd | |
|
25 | 7 | adantl | |
26 | 9 | adantl | |
27 | elfzelz | |
|
28 | 1zzd | |
|
29 | 27 28 | ifcld | |
30 | 29 | adantl | |
31 | 24 25 26 30 | fvmptd | |
32 | 31 | prodeq2dv | |
33 | 32 | mpteq2dva | |
34 | oveq2 | |
|
35 | 34 | prodeq1d | |
36 | 35 | adantl | |
37 | simpl | |
|
38 | fzfid | |
|
39 | elfznn | |
|
40 | 11 | a1i | |
41 | 39 40 | ifcld | |
42 | 41 | adantl | |
43 | 38 42 | fprodnncl | |
44 | 33 36 37 43 | fvmptd | |
45 | nnnn0 | |
|
46 | prmoval | |
|
47 | 45 46 | syl | |
48 | 47 | eqcomd | |
49 | 48 | adantr | |
50 | 44 49 | eqtrd | |
51 | 50 | oveq1d | |
52 | 51 | oveq1d | |
53 | 23 52 | breqtrrd | |
54 | 53 | ralrimiva | |
55 | 1 22 54 | prmgaplem8 | |
56 | 55 | rgen | |