| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|
| 2 |
|
eqid |
|
| 3 |
|
fzfid |
|
| 4 |
|
eqidd |
|
| 5 |
|
eleq1 |
|
| 6 |
|
id |
|
| 7 |
5 6
|
ifbieq1d |
|
| 8 |
7
|
adantl |
|
| 9 |
|
elfznn |
|
| 10 |
9
|
adantl |
|
| 11 |
|
1nn |
|
| 12 |
11
|
a1i |
|
| 13 |
9 12
|
ifcld |
|
| 14 |
13
|
adantl |
|
| 15 |
4 8 10 14
|
fvmptd |
|
| 16 |
15 14
|
eqeltrd |
|
| 17 |
3 16
|
fprodnncl |
|
| 18 |
2 17
|
fmpti |
|
| 19 |
|
nnex |
|
| 20 |
19 19
|
elmap |
|
| 21 |
18 20
|
mpbir |
|
| 22 |
21
|
a1i |
|
| 23 |
|
prmgapprmolem |
|
| 24 |
|
eqidd |
|
| 25 |
7
|
adantl |
|
| 26 |
9
|
adantl |
|
| 27 |
|
elfzelz |
|
| 28 |
|
1zzd |
|
| 29 |
27 28
|
ifcld |
|
| 30 |
29
|
adantl |
|
| 31 |
24 25 26 30
|
fvmptd |
|
| 32 |
31
|
prodeq2dv |
|
| 33 |
32
|
mpteq2dva |
|
| 34 |
|
oveq2 |
|
| 35 |
34
|
prodeq1d |
|
| 36 |
35
|
adantl |
|
| 37 |
|
simpl |
|
| 38 |
|
fzfid |
|
| 39 |
|
elfznn |
|
| 40 |
11
|
a1i |
|
| 41 |
39 40
|
ifcld |
|
| 42 |
41
|
adantl |
|
| 43 |
38 42
|
fprodnncl |
|
| 44 |
33 36 37 43
|
fvmptd |
|
| 45 |
|
nnnn0 |
|
| 46 |
|
prmoval |
|
| 47 |
45 46
|
syl |
|
| 48 |
47
|
eqcomd |
|
| 49 |
48
|
adantr |
|
| 50 |
44 49
|
eqtrd |
|
| 51 |
50
|
oveq1d |
|
| 52 |
51
|
oveq1d |
|
| 53 |
23 52
|
breqtrrd |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
1 22 54
|
prmgaplem8 |
|
| 56 |
55
|
rgen |
|