Metamath Proof Explorer


Theorem prmgapprmo

Description: Alternate proof of prmgap : in contrast to prmgap , where the gap starts at n! , the factorial of n, the gap starts at n#, the primorial of n. (Contributed by AV, 15-Aug-2020) (Revised by AV, 29-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion prmgapprmo npqnqpzp+1..^qz

Proof

Step Hyp Ref Expression
1 id nn
2 eqid jk=1jmifmm1k=jk=1jmifmm1k
3 fzfid j1jFin
4 eqidd jk1jmifmm1=mifmm1
5 eleq1 m=kmk
6 id m=km=k
7 5 6 ifbieq1d m=kifmm1=ifkk1
8 7 adantl jk1jm=kifmm1=ifkk1
9 elfznn k1jk
10 9 adantl jk1jk
11 1nn 1
12 11 a1i k1j1
13 9 12 ifcld k1jifkk1
14 13 adantl jk1jifkk1
15 4 8 10 14 fvmptd jk1jmifmm1k=ifkk1
16 15 14 eqeltrd jk1jmifmm1k
17 3 16 fprodnncl jk=1jmifmm1k
18 2 17 fmpti jk=1jmifmm1k:
19 nnex V
20 19 19 elmap jk=1jmifmm1kjk=1jmifmm1k:
21 18 20 mpbir jk=1jmifmm1k
22 21 a1i njk=1jmifmm1k
23 prmgapprmolem ni2n1<#pn+igcdi
24 eqidd ni2njk1jmifmm1=mifmm1
25 7 adantl ni2njk1jm=kifmm1=ifkk1
26 9 adantl ni2njk1jk
27 elfzelz k1jk
28 1zzd k1j1
29 27 28 ifcld k1jifkk1
30 29 adantl ni2njk1jifkk1
31 24 25 26 30 fvmptd ni2njk1jmifmm1k=ifkk1
32 31 prodeq2dv ni2njk=1jmifmm1k=k=1jifkk1
33 32 mpteq2dva ni2njk=1jmifmm1k=jk=1jifkk1
34 oveq2 j=n1j=1n
35 34 prodeq1d j=nk=1jifkk1=k=1nifkk1
36 35 adantl ni2nj=nk=1jifkk1=k=1nifkk1
37 simpl ni2nn
38 fzfid ni2n1nFin
39 elfznn k1nk
40 11 a1i k1n1
41 39 40 ifcld k1nifkk1
42 41 adantl ni2nk1nifkk1
43 38 42 fprodnncl ni2nk=1nifkk1
44 33 36 37 43 fvmptd ni2njk=1jmifmm1kn=k=1nifkk1
45 nnnn0 nn0
46 prmoval n0#pn=k=1nifkk1
47 45 46 syl n#pn=k=1nifkk1
48 47 eqcomd nk=1nifkk1=#pn
49 48 adantr ni2nk=1nifkk1=#pn
50 44 49 eqtrd ni2njk=1jmifmm1kn=#pn
51 50 oveq1d ni2njk=1jmifmm1kn+i=#pn+i
52 51 oveq1d ni2njk=1jmifmm1kn+igcdi=#pn+igcdi
53 23 52 breqtrrd ni2n1<jk=1jmifmm1kn+igcdi
54 53 ralrimiva ni2n1<jk=1jmifmm1kn+igcdi
55 1 22 54 prmgaplem8 npqnqpzp+1..^qz
56 55 rgen npqnqpzp+1..^qz