Metamath Proof Explorer


Theorem ps-2

Description: Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in MaedaMaeda p. 68 and part of Theorem 16.4 in MaedaMaeda p. 69. (Contributed by NM, 1-Dec-2011)

Ref Expression
Hypotheses ps1.l ˙=K
ps1.j ˙=joinK
ps1.a A=AtomsK
Assertion ps-2 KHLPAQARASATA¬P˙Q˙RSTS˙P˙QT˙Q˙RuAu˙P˙Ru˙S˙T

Proof

Step Hyp Ref Expression
1 ps1.l ˙=K
2 ps1.j ˙=joinK
3 ps1.a A=AtomsK
4 simpl21 KHLPAQARASATAS=PPA
5 simp1 KHLPAQARASATAKHL
6 simp21 KHLPAQARASATAPA
7 simp23 KHLPAQARASATARA
8 1 2 3 hlatlej1 KHLPARAP˙P˙R
9 5 6 7 8 syl3anc KHLPAQARASATAP˙P˙R
10 9 adantr KHLPAQARASATAS=PP˙P˙R
11 simp3r KHLPAQARASATATA
12 1 2 3 hlatlej1 KHLPATAP˙P˙T
13 5 6 11 12 syl3anc KHLPAQARASATAP˙P˙T
14 oveq1 S=PS˙T=P˙T
15 14 breq2d S=PP˙S˙TP˙P˙T
16 13 15 syl5ibrcom KHLPAQARASATAS=PP˙S˙T
17 16 imp KHLPAQARASATAS=PP˙S˙T
18 breq1 u=Pu˙P˙RP˙P˙R
19 breq1 u=Pu˙S˙TP˙S˙T
20 18 19 anbi12d u=Pu˙P˙Ru˙S˙TP˙P˙RP˙S˙T
21 20 rspcev PAP˙P˙RP˙S˙TuAu˙P˙Ru˙S˙T
22 4 10 17 21 syl12anc KHLPAQARASATAS=PuAu˙P˙Ru˙S˙T
23 22 a1d KHLPAQARASATAS=P¬P˙Q˙RSTS˙P˙QT˙Q˙RuAu˙P˙Ru˙S˙T
24 hlop KHLKOP
25 24 3ad2ant1 KHLPAQARASATAKOP
26 eqid BaseK=BaseK
27 eqid 0.K=0.K
28 26 27 op0cl KOP0.KBaseK
29 25 28 syl KHLPAQARASATA0.KBaseK
30 26 3 atbase PAPBaseK
31 6 30 syl KHLPAQARASATAPBaseK
32 eqid K=K
33 27 32 3 atcvr0 KHLPA0.KKP
34 5 6 33 syl2anc KHLPAQARASATA0.KKP
35 eqid <K=<K
36 26 35 32 cvrlt KHL0.KBaseKPBaseK0.KKP0.K<KP
37 5 29 31 34 36 syl31anc KHLPAQARASATA0.K<KP
38 hlpos KHLKPoset
39 38 3ad2ant1 KHLPAQARASATAKPoset
40 hllat KHLKLat
41 40 3ad2ant1 KHLPAQARASATAKLat
42 26 3 atbase RARBaseK
43 7 42 syl KHLPAQARASATARBaseK
44 26 2 latjcl KLatPBaseKRBaseKP˙RBaseK
45 41 31 43 44 syl3anc KHLPAQARASATAP˙RBaseK
46 26 1 35 pltletr KPoset0.KBaseKPBaseKP˙RBaseK0.K<KPP˙P˙R0.K<KP˙R
47 39 29 31 45 46 syl13anc KHLPAQARASATA0.K<KPP˙P˙R0.K<KP˙R
48 37 9 47 mp2and KHLPAQARASATA0.K<KP˙R
49 35 pltne KHL0.KBaseKP˙RBaseK0.K<KP˙R0.KP˙R
50 5 29 45 49 syl3anc KHLPAQARASATA0.K<KP˙R0.KP˙R
51 48 50 mpd KHLPAQARASATA0.KP˙R
52 51 necomd KHLPAQARASATAP˙R0.K
53 52 adantr KHLPAQARASATASPS˙P˙QT˙Q˙RP˙R0.K
54 hlatl KHLKAtLat
55 54 3ad2ant1 KHLPAQARASATAKAtLat
56 simp3l KHLPAQARASATASA
57 1 3 atncmp KAtLatSAPA¬S˙PSP
58 55 56 6 57 syl3anc KHLPAQARASATA¬S˙PSP
59 simp22 KHLPAQARASATAQA
60 26 1 2 3 hlexch1 KHLSAQAPBaseK¬S˙PS˙P˙QQ˙P˙S
61 60 3expia KHLSAQAPBaseK¬S˙PS˙P˙QQ˙P˙S
62 5 56 59 31 61 syl13anc KHLPAQARASATA¬S˙PS˙P˙QQ˙P˙S
63 58 62 sylbird KHLPAQARASATASPS˙P˙QQ˙P˙S
64 63 imp32 KHLPAQARASATASPS˙P˙QQ˙P˙S
65 26 3 atbase QAQBaseK
66 59 65 syl KHLPAQARASATAQBaseK
67 26 3 atbase SASBaseK
68 56 67 syl KHLPAQARASATASBaseK
69 26 2 latjcl KLatPBaseKSBaseKP˙SBaseK
70 41 31 68 69 syl3anc KHLPAQARASATAP˙SBaseK
71 26 1 2 latjlej1 KLatQBaseKP˙SBaseKRBaseKQ˙P˙SQ˙R˙P˙S˙R
72 41 66 70 43 71 syl13anc KHLPAQARASATAQ˙P˙SQ˙R˙P˙S˙R
73 72 adantr KHLPAQARASATASPS˙P˙QQ˙P˙SQ˙R˙P˙S˙R
74 64 73 mpd KHLPAQARASATASPS˙P˙QQ˙R˙P˙S˙R
75 74 adantrrr KHLPAQARASATASPS˙P˙QT˙Q˙RQ˙R˙P˙S˙R
76 26 3 atbase TATBaseK
77 11 76 syl KHLPAQARASATATBaseK
78 26 2 latjcl KLatQBaseKRBaseKQ˙RBaseK
79 41 66 43 78 syl3anc KHLPAQARASATAQ˙RBaseK
80 26 2 latjcl KLatP˙SBaseKRBaseKP˙S˙RBaseK
81 41 70 43 80 syl3anc KHLPAQARASATAP˙S˙RBaseK
82 26 1 lattr KLatTBaseKQ˙RBaseKP˙S˙RBaseKT˙Q˙RQ˙R˙P˙S˙RT˙P˙S˙R
83 41 77 79 81 82 syl13anc KHLPAQARASATAT˙Q˙RQ˙R˙P˙S˙RT˙P˙S˙R
84 83 expdimp KHLPAQARASATAT˙Q˙RQ˙R˙P˙S˙RT˙P˙S˙R
85 84 adantrl KHLPAQARASATAS˙P˙QT˙Q˙RQ˙R˙P˙S˙RT˙P˙S˙R
86 85 adantrl KHLPAQARASATASPS˙P˙QT˙Q˙RQ˙R˙P˙S˙RT˙P˙S˙R
87 75 86 mpd KHLPAQARASATASPS˙P˙QT˙Q˙RT˙P˙S˙R
88 2 3 hlatj32 KHLPASARAP˙S˙R=P˙R˙S
89 5 6 56 7 88 syl13anc KHLPAQARASATAP˙S˙R=P˙R˙S
90 89 breq2d KHLPAQARASATAT˙P˙S˙RT˙P˙R˙S
91 90 adantr KHLPAQARASATASPS˙P˙QT˙Q˙RT˙P˙S˙RT˙P˙R˙S
92 87 91 mpbid KHLPAQARASATASPS˙P˙QT˙Q˙RT˙P˙R˙S
93 53 92 jca KHLPAQARASATASPS˙P˙QT˙Q˙RP˙R0.KT˙P˙R˙S
94 93 adantrrl KHLPAQARASATASP¬P˙Q˙RS˙P˙QT˙Q˙RP˙R0.KT˙P˙R˙S
95 94 ex KHLPAQARASATASP¬P˙Q˙RS˙P˙QT˙Q˙RP˙R0.KT˙P˙R˙S
96 26 1 2 27 3 cvrat4 KHLP˙RBaseKTASAP˙R0.KT˙P˙R˙SuAu˙P˙RT˙S˙u
97 5 45 11 56 96 syl13anc KHLPAQARASATAP˙R0.KT˙P˙R˙SuAu˙P˙RT˙S˙u
98 95 97 syld KHLPAQARASATASP¬P˙Q˙RS˙P˙QT˙Q˙RuAu˙P˙RT˙S˙u
99 98 impl KHLPAQARASATASP¬P˙Q˙RS˙P˙QT˙Q˙RuAu˙P˙RT˙S˙u
100 99 adantrlr KHLPAQARASATASP¬P˙Q˙RSTS˙P˙QT˙Q˙RuAu˙P˙RT˙S˙u
101 1 3 atncmp KAtLatTASA¬T˙STS
102 55 11 56 101 syl3anc KHLPAQARASATA¬T˙STS
103 necom TSST
104 102 103 bitrdi KHLPAQARASATA¬T˙SST
105 104 adantr KHLPAQARASATAuA¬T˙SST
106 simpl1 KHLPAQARASATAuAKHL
107 simpl3r KHLPAQARASATAuATA
108 simpr KHLPAQARASATAuAuA
109 68 adantr KHLPAQARASATAuASBaseK
110 26 1 2 3 hlexch1 KHLTAuASBaseK¬T˙ST˙S˙uu˙S˙T
111 110 3expia KHLTAuASBaseK¬T˙ST˙S˙uu˙S˙T
112 106 107 108 109 111 syl13anc KHLPAQARASATAuA¬T˙ST˙S˙uu˙S˙T
113 105 112 sylbird KHLPAQARASATAuASTT˙S˙uu˙S˙T
114 113 imp KHLPAQARASATAuASTT˙S˙uu˙S˙T
115 114 an32s KHLPAQARASATASTuAT˙S˙uu˙S˙T
116 115 anim2d KHLPAQARASATASTuAu˙P˙RT˙S˙uu˙P˙Ru˙S˙T
117 116 reximdva KHLPAQARASATASTuAu˙P˙RT˙S˙uuAu˙P˙Ru˙S˙T
118 117 ad2ant2rl KHLPAQARASATASP¬P˙Q˙RSTuAu˙P˙RT˙S˙uuAu˙P˙Ru˙S˙T
119 118 adantrr KHLPAQARASATASP¬P˙Q˙RSTS˙P˙QT˙Q˙RuAu˙P˙RT˙S˙uuAu˙P˙Ru˙S˙T
120 100 119 mpd KHLPAQARASATASP¬P˙Q˙RSTS˙P˙QT˙Q˙RuAu˙P˙Ru˙S˙T
121 120 ex KHLPAQARASATASP¬P˙Q˙RSTS˙P˙QT˙Q˙RuAu˙P˙Ru˙S˙T
122 23 121 pm2.61dane KHLPAQARASATA¬P˙Q˙RSTS˙P˙QT˙Q˙RuAu˙P˙Ru˙S˙T
123 122 imp KHLPAQARASATA¬P˙Q˙RSTS˙P˙QT˙Q˙RuAu˙P˙Ru˙S˙T