Metamath Proof Explorer


Theorem psrval

Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrval.s S=ImPwSerR
psrval.k K=BaseR
psrval.a +˙=+R
psrval.m ·˙=R
psrval.o O=TopOpenR
psrval.d D=h0I|h-1Fin
psrval.b φB=KD
psrval.p ˙=f+˙B×B
psrval.t ×˙=fB,gBkDRxyD|yfkfx·˙gkfx
psrval.v ˙=xK,fBD×x·˙ff
psrval.j φJ=𝑡D×O
psrval.i φIW
psrval.r φRX
Assertion psrval φS=BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJ

Proof

Step Hyp Ref Expression
1 psrval.s S=ImPwSerR
2 psrval.k K=BaseR
3 psrval.a +˙=+R
4 psrval.m ·˙=R
5 psrval.o O=TopOpenR
6 psrval.d D=h0I|h-1Fin
7 psrval.b φB=KD
8 psrval.p ˙=f+˙B×B
9 psrval.t ×˙=fB,gBkDRxyD|yfkfx·˙gkfx
10 psrval.v ˙=xK,fBD×x·˙ff
11 psrval.j φJ=𝑡D×O
12 psrval.i φIW
13 psrval.r φRX
14 df-psr mPwSer=iV,rVh0i|h-1Fin/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
15 14 a1i φmPwSer=iV,rVh0i|h-1Fin/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
16 simprl φi=Ir=Ri=I
17 16 oveq2d φi=Ir=R0i=0I
18 rabeq 0i=0Ih0i|h-1Fin=h0I|h-1Fin
19 17 18 syl φi=Ir=Rh0i|h-1Fin=h0I|h-1Fin
20 19 6 eqtr4di φi=Ir=Rh0i|h-1Fin=D
21 20 csbeq1d φi=Ir=Rh0i|h-1Fin/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr=D/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
22 ovex 0iV
23 22 rabex h0i|h-1FinV
24 20 23 eqeltrrdi φi=Ir=RDV
25 simplrr φi=Ir=Rd=Dr=R
26 25 fveq2d φi=Ir=Rd=DBaser=BaseR
27 26 2 eqtr4di φi=Ir=Rd=DBaser=K
28 simpr φi=Ir=Rd=Dd=D
29 27 28 oveq12d φi=Ir=Rd=DBaserd=KD
30 7 ad2antrr φi=Ir=Rd=DB=KD
31 29 30 eqtr4d φi=Ir=Rd=DBaserd=B
32 31 csbeq1d φi=Ir=Rd=DBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr=B/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
33 ovex BaserdV
34 31 33 eqeltrrdi φi=Ir=Rd=DBV
35 simpr φi=Ir=Rd=Db=Bb=B
36 35 opeq2d φi=Ir=Rd=Db=BBasendxb=BasendxB
37 25 adantr φi=Ir=Rd=Db=Br=R
38 37 fveq2d φi=Ir=Rd=Db=B+r=+R
39 38 3 eqtr4di φi=Ir=Rd=Db=B+r=+˙
40 39 ofeqd φi=Ir=Rd=Db=Bf+r=f+˙
41 35 35 xpeq12d φi=Ir=Rd=Db=Bb×b=B×B
42 40 41 reseq12d φi=Ir=Rd=Db=Bf+rb×b=f+˙B×B
43 42 8 eqtr4di φi=Ir=Rd=Db=Bf+rb×b=˙
44 43 opeq2d φi=Ir=Rd=Db=B+ndxf+rb×b=+ndx˙
45 28 adantr φi=Ir=Rd=Db=Bd=D
46 rabeq d=Dyd|yfk=yD|yfk
47 45 46 syl φi=Ir=Rd=Db=Byd|yfk=yD|yfk
48 37 fveq2d φi=Ir=Rd=Db=Br=R
49 48 4 eqtr4di φi=Ir=Rd=Db=Br=·˙
50 49 oveqd φi=Ir=Rd=Db=Bfxrgkfx=fx·˙gkfx
51 47 50 mpteq12dv φi=Ir=Rd=Db=Bxyd|yfkfxrgkfx=xyD|yfkfx·˙gkfx
52 37 51 oveq12d φi=Ir=Rd=Db=Brxyd|yfkfxrgkfx=RxyD|yfkfx·˙gkfx
53 45 52 mpteq12dv φi=Ir=Rd=Db=Bkdrxyd|yfkfxrgkfx=kDRxyD|yfkfx·˙gkfx
54 35 35 53 mpoeq123dv φi=Ir=Rd=Db=Bfb,gbkdrxyd|yfkfxrgkfx=fB,gBkDRxyD|yfkfx·˙gkfx
55 54 9 eqtr4di φi=Ir=Rd=Db=Bfb,gbkdrxyd|yfkfxrgkfx=×˙
56 55 opeq2d φi=Ir=Rd=Db=Bndxfb,gbkdrxyd|yfkfxrgkfx=ndx×˙
57 36 44 56 tpeq123d φi=Ir=Rd=Db=BBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfx=BasendxB+ndx˙ndx×˙
58 37 opeq2d φi=Ir=Rd=Db=BScalarndxr=ScalarndxR
59 27 adantr φi=Ir=Rd=Db=BBaser=K
60 49 ofeqd φi=Ir=Rd=Db=Bfr=f·˙
61 45 xpeq1d φi=Ir=Rd=Db=Bd×x=D×x
62 eqidd φi=Ir=Rd=Db=Bf=f
63 60 61 62 oveq123d φi=Ir=Rd=Db=Bd×xrff=D×x·˙ff
64 59 35 63 mpoeq123dv φi=Ir=Rd=Db=BxBaser,fbd×xrff=xK,fBD×x·˙ff
65 64 10 eqtr4di φi=Ir=Rd=Db=BxBaser,fbd×xrff=˙
66 65 opeq2d φi=Ir=Rd=Db=BndxxBaser,fbd×xrff=ndx˙
67 37 fveq2d φi=Ir=Rd=Db=BTopOpenr=TopOpenR
68 67 5 eqtr4di φi=Ir=Rd=Db=BTopOpenr=O
69 68 sneqd φi=Ir=Rd=Db=BTopOpenr=O
70 45 69 xpeq12d φi=Ir=Rd=Db=Bd×TopOpenr=D×O
71 70 fveq2d φi=Ir=Rd=Db=B𝑡d×TopOpenr=𝑡D×O
72 11 ad3antrrr φi=Ir=Rd=Db=BJ=𝑡D×O
73 71 72 eqtr4d φi=Ir=Rd=Db=B𝑡d×TopOpenr=J
74 73 opeq2d φi=Ir=Rd=Db=BTopSetndx𝑡d×TopOpenr=TopSetndxJ
75 58 66 74 tpeq123d φi=Ir=Rd=Db=BScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr=ScalarndxRndx˙TopSetndxJ
76 57 75 uneq12d φi=Ir=Rd=Db=BBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr=BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJ
77 34 76 csbied φi=Ir=Rd=DB/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr=BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJ
78 32 77 eqtrd φi=Ir=Rd=DBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr=BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJ
79 24 78 csbied φi=Ir=RD/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr=BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJ
80 21 79 eqtrd φi=Ir=Rh0i|h-1Fin/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr=BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJ
81 12 elexd φIV
82 13 elexd φRV
83 tpex BasendxB+ndx˙ndx×˙V
84 tpex ScalarndxRndx˙TopSetndxJV
85 83 84 unex BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJV
86 85 a1i φBasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJV
87 15 80 81 82 86 ovmpod φImPwSerR=BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJ
88 1 87 eqtrid φS=BasendxB+ndx˙ndx×˙ScalarndxRndx˙TopSetndxJ