Metamath Proof Explorer


Theorem pthhashvtx

Description: A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023)

Ref Expression
Hypothesis pthhashvtx.1 V=VtxG
Assertion pthhashvtx FPathsGPFV

Proof

Step Hyp Ref Expression
1 pthhashvtx.1 V=VtxG
2 hashfz0 F100F1=F-1+1
3 pthiswlk FPathsGPFWalksGP
4 wlkcl FWalksGPF0
5 3 4 syl FPathsGPF0
6 nn0cn F0F
7 npcan1 FF-1+1=F
8 5 6 7 3syl FPathsGPF-1+1=F
9 2 8 sylan9eqr FPathsGPF100F1=F
10 1 wlkp FWalksGPP:0FV
11 3 10 syl FPathsGPP:0FV
12 11 ffnd FPathsGPPFn0F
13 fzfi 0F1Fin
14 resfnfinfin PFn0F0F1FinP0F1Fin
15 12 13 14 sylancl FPathsGPP0F1Fin
16 simpr FPathsGPF10F10
17 fzssp1 0F10F-1+1
18 8 oveq2d FPathsGP0F-1+1=0F
19 17 18 sseqtrid FPathsGP0F10F
20 11 19 fssresd FPathsGPP0F1:0F1V
21 20 adantr FPathsGPF10P0F1:0F1V
22 fz1ssfz0 1F10F1
23 22 a1i FPathsGP1F10F1
24 20 23 fssresd FPathsGPP0F11F1:1F1V
25 ispth FPathsGPFTrailsGPFunP1..^F-1P0FP1..^F=
26 25 simp2bi FPathsGPFunP1..^F-1
27 nn0z F0F
28 fzoval F1..^F=1F1
29 27 28 syl F01..^F=1F1
30 5 29 syl FPathsGP1..^F=1F1
31 30 reseq2d FPathsGPP1..^F=P1F1
32 resabs1 1F10F1P0F11F1=P1F1
33 22 32 ax-mp P0F11F1=P1F1
34 31 33 eqtr4di FPathsGPP1..^F=P0F11F1
35 34 cnveqd FPathsGPP1..^F-1=P0F11F1-1
36 35 funeqd FPathsGPFunP1..^F-1FunP0F11F1-1
37 26 36 mpbid FPathsGPFunP0F11F1-1
38 df-f1 P0F11F1:1F11-1VP0F11F1:1F1VFunP0F11F1-1
39 24 37 38 sylanbrc FPathsGPP0F11F1:1F11-1V
40 39 adantr FPathsGPF10P0F11F1:1F11-1V
41 snsspr1 00F
42 imass2 00FP0P0F
43 41 42 ax-mp P0P0F
44 0elfz F1000F1
45 44 snssd F1000F1
46 resima2 00F1P0F10=P0
47 sseq1 P0F10=P0P0F10P0FP0P0F
48 45 46 47 3syl F10P0F10P0FP0P0F
49 43 48 mpbiri F10P0F10P0F
50 resima2 1F10F1P0F11F1=P1F1
51 22 50 ax-mp P0F11F1=P1F1
52 30 imaeq2d FPathsGPP1..^F=P1F1
53 51 52 eqtr4id FPathsGPP0F11F1=P1..^F
54 53 ineq2d FPathsGPP0FP0F11F1=P0FP1..^F
55 25 simp3bi FPathsGPP0FP1..^F=
56 54 55 eqtrd FPathsGPP0FP0F11F1=
57 ssdisj P0F10P0FP0FP0F11F1=P0F10P0F11F1=
58 49 56 57 syl2anr FPathsGPF10P0F10P0F11F1=
59 16 21 40 58 f1resfz0f1d FPathsGPF10P0F1:0F11-1V
60 1 fvexi VV
61 hashf1dmcdm P0F1FinVVP0F1:0F11-1V0F1V
62 60 61 mp3an2 P0F1FinP0F1:0F11-1V0F1V
63 15 59 62 syl2an2r FPathsGPF100F1V
64 9 63 eqbrtrrd FPathsGPF10FV
65 0nn0m1nnn0 F=0F0¬F10
66 65 biimpri F0¬F10F=0
67 5 66 sylan FPathsGP¬F10F=0
68 hashge0 VV0V
69 60 68 ax-mp 0V
70 67 69 eqbrtrdi FPathsGP¬F10FV
71 64 70 pm2.61dan FPathsGPFV