Metamath Proof Explorer


Theorem pzriprng1ALT

Description: The ring unity of the ring ( ZZring Xs. ZZring ) constructed from the ring unity of the two-sided ideal ( ZZ X. { 0 } ) and the ring unity of the quotient of the ring and the ideal (using ring2idlqus1 ). (Contributed by AV, 24-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pzriprng1ALT 1ring×𝑠ring=11

Proof

Step Hyp Ref Expression
1 eqid ring×𝑠ring=ring×𝑠ring
2 1 pzriprnglem1 ring×𝑠ringRng
3 eqid ×0=×0
4 eqid ring×𝑠ring𝑠×0=ring×𝑠ring𝑠×0
5 1 3 4 pzriprnglem8 ×02Idealring×𝑠ring
6 2 5 pm3.2i ring×𝑠ringRng×02Idealring×𝑠ring
7 1 3 4 pzriprnglem7 ring×𝑠ring𝑠×0Ring
8 eqid 1ring×𝑠ring𝑠×0=1ring×𝑠ring𝑠×0
9 eqid ring×𝑠ring~QG×0=ring×𝑠ring~QG×0
10 eqid ring×𝑠ring/𝑠ring×𝑠ring~QG×0=ring×𝑠ring/𝑠ring×𝑠ring~QG×0
11 1 3 4 8 9 10 pzriprnglem13 ring×𝑠ring/𝑠ring×𝑠ring~QG×0Ring
12 7 11 pm3.2i ring×𝑠ring𝑠×0Ringring×𝑠ring/𝑠ring×𝑠ring~QG×0Ring
13 1z 1
14 1ex 1V
15 14 snid 11
16 13 15 opelxpii 11×1
17 1 3 4 8 9 10 pzriprnglem14 1ring×𝑠ring/𝑠ring×𝑠ring~QG×0=×1
18 16 17 eleqtrri 111ring×𝑠ring/𝑠ring×𝑠ring~QG×0
19 eqid ring×𝑠ring=ring×𝑠ring
20 eqid -ring×𝑠ring=-ring×𝑠ring
21 eqid +ring×𝑠ring=+ring×𝑠ring
22 19 8 20 21 ring2idlqus1 ring×𝑠ringRng×02Idealring×𝑠ringring×𝑠ring𝑠×0Ringring×𝑠ring/𝑠ring×𝑠ring~QG×0Ring111ring×𝑠ring/𝑠ring×𝑠ring~QG×0ring×𝑠ringRing1ring×𝑠ring=11-ring×𝑠ring1ring×𝑠ring𝑠×0ring×𝑠ring11+ring×𝑠ring1ring×𝑠ring𝑠×0
23 22 simprd ring×𝑠ringRng×02Idealring×𝑠ringring×𝑠ring𝑠×0Ringring×𝑠ring/𝑠ring×𝑠ring~QG×0Ring111ring×𝑠ring/𝑠ring×𝑠ring~QG×01ring×𝑠ring=11-ring×𝑠ring1ring×𝑠ring𝑠×0ring×𝑠ring11+ring×𝑠ring1ring×𝑠ring𝑠×0
24 6 12 18 23 mp3an 1ring×𝑠ring=11-ring×𝑠ring1ring×𝑠ring𝑠×0ring×𝑠ring11+ring×𝑠ring1ring×𝑠ring𝑠×0
25 1 3 4 8 pzriprnglem9 1ring×𝑠ring𝑠×0=10
26 25 oveq1i 1ring×𝑠ring𝑠×0ring×𝑠ring11=10ring×𝑠ring11
27 26 oveq2i 11-ring×𝑠ring1ring×𝑠ring𝑠×0ring×𝑠ring11=11-ring×𝑠ring10ring×𝑠ring11
28 27 25 oveq12i 11-ring×𝑠ring1ring×𝑠ring𝑠×0ring×𝑠ring11+ring×𝑠ring1ring×𝑠ring𝑠×0=11-ring×𝑠ring10ring×𝑠ring11+ring×𝑠ring10
29 zringring ringRing
30 zringbas =Basering
31 id ringRingringRing
32 13 a1i ringRing1
33 0zd ringRing0
34 zmulcl 1111
35 13 13 34 mp2an 11
36 35 a1i ringRing11
37 zringmulr ×=ring
38 37 eqcomi ring=×
39 38 oveqi 0ring1=01
40 0z 0
41 zmulcl 0101
42 40 13 41 mp2an 01
43 39 42 eqeltri 0ring1
44 43 a1i ringRing0ring1
45 eqid ring=ring
46 1 30 30 31 31 32 33 32 32 36 44 37 45 19 xpsmul ringRing10ring×𝑠ring11=110ring1
47 29 46 ax-mp 10ring×𝑠ring11=110ring1
48 47 oveq2i 11-ring×𝑠ring10ring×𝑠ring11=11-ring×𝑠ring110ring1
49 1t1e1 11=1
50 ax-1cn 1
51 50 mul02i 01=0
52 39 51 eqtri 0ring1=0
53 49 52 opeq12i 110ring1=10
54 53 oveq2i 11-ring×𝑠ring110ring1=11-ring×𝑠ring10
55 zringgrp ringGrp
56 55 a1i 1ringGrp
57 id 11
58 0zd 10
59 eqid -ring=-ring
60 1 30 30 56 56 57 57 57 58 59 59 20 xpsgrpsub 111-ring×𝑠ring10=1-ring11-ring0
61 13 60 ax-mp 11-ring×𝑠ring10=1-ring11-ring0
62 48 54 61 3eqtri 11-ring×𝑠ring10ring×𝑠ring11=1-ring11-ring0
63 62 oveq1i 11-ring×𝑠ring10ring×𝑠ring11+ring×𝑠ring10=1-ring11-ring0+ring×𝑠ring10
64 59 zringsub 111-ring1=11
65 13 13 64 mp2an 1-ring1=11
66 1m1e0 11=0
67 65 66 eqtri 1-ring1=0
68 59 zringsub 101-ring0=10
69 13 40 68 mp2an 1-ring0=10
70 67 69 opeq12i 1-ring11-ring0=010
71 70 oveq1i 1-ring11-ring0+ring×𝑠ring10=010+ring×𝑠ring10
72 1m0e1 10=1
73 72 opeq2i 010=01
74 73 oveq1i 010+ring×𝑠ring10=01+ring×𝑠ring10
75 29 a1i 1ringRing
76 58 57 zaddcld 10+1
77 57 58 zaddcld 11+0
78 zringplusg +=+ring
79 1 30 30 75 75 58 57 57 58 76 77 78 78 21 xpsadd 101+ring×𝑠ring10=0+11+0
80 13 79 ax-mp 01+ring×𝑠ring10=0+11+0
81 0p1e1 0+1=1
82 1p0e1 1+0=1
83 81 82 opeq12i 0+11+0=11
84 74 80 83 3eqtri 010+ring×𝑠ring10=11
85 63 71 84 3eqtri 11-ring×𝑠ring10ring×𝑠ring11+ring×𝑠ring10=11
86 24 28 85 3eqtri 1ring×𝑠ring=11