| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtophmeo.2 |
|
| 2 |
|
qtophmeo.3 |
|
| 3 |
|
qtophmeo.4 |
|
| 4 |
|
qtophmeo.5 |
|
| 5 |
|
fofn |
|
| 6 |
3 5
|
syl |
|
| 7 |
|
qtopid |
|
| 8 |
1 6 7
|
syl2anc |
|
| 9 |
|
df-3an |
|
| 10 |
4
|
biimpd |
|
| 11 |
10
|
impr |
|
| 12 |
9 11
|
sylan2b |
|
| 13 |
1 2 8 12
|
qtopeu |
|
| 14 |
|
reurex |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
simprl |
|
| 17 |
|
fofn |
|
| 18 |
2 17
|
syl |
|
| 19 |
|
qtopid |
|
| 20 |
1 18 19
|
syl2anc |
|
| 21 |
|
df-3an |
|
| 22 |
4
|
biimprd |
|
| 23 |
22
|
impr |
|
| 24 |
21 23
|
sylan2b |
|
| 25 |
1 3 20 24
|
qtopeu |
|
| 26 |
25
|
adantr |
|
| 27 |
|
reurex |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
qtoptopon |
|
| 30 |
1 2 29
|
syl2anc |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
|
qtoptopon |
|
| 33 |
1 3 32
|
syl2anc |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
|
simplrl |
|
| 36 |
|
cnf2 |
|
| 37 |
31 34 35 36
|
syl3anc |
|
| 38 |
|
simprl |
|
| 39 |
|
cnf2 |
|
| 40 |
34 31 38 39
|
syl3anc |
|
| 41 |
|
coeq1 |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
|
coeq1 |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
|
simpr3 |
|
| 46 |
1 2 20 45
|
qtopeu |
|
| 47 |
46
|
ad2antrr |
|
| 48 |
|
cnco |
|
| 49 |
35 38 48
|
syl2anc |
|
| 50 |
|
idcn |
|
| 51 |
30 50
|
syl |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
|
simprr |
|
| 54 |
|
simplrr |
|
| 55 |
54
|
coeq2d |
|
| 56 |
53 55
|
eqtrd |
|
| 57 |
|
coass |
|
| 58 |
56 57
|
eqtr4di |
|
| 59 |
|
fof |
|
| 60 |
2 59
|
syl |
|
| 61 |
60
|
ad2antrr |
|
| 62 |
|
fcoi2 |
|
| 63 |
61 62
|
syl |
|
| 64 |
63
|
eqcomd |
|
| 65 |
42 44 47 49 52 58 64
|
reu2eqd |
|
| 66 |
|
coeq1 |
|
| 67 |
66
|
eqeq2d |
|
| 68 |
|
coeq1 |
|
| 69 |
68
|
eqeq2d |
|
| 70 |
|
simpr3 |
|
| 71 |
1 3 8 70
|
qtopeu |
|
| 72 |
71
|
ad2antrr |
|
| 73 |
|
cnco |
|
| 74 |
38 35 73
|
syl2anc |
|
| 75 |
|
idcn |
|
| 76 |
33 75
|
syl |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
53
|
coeq2d |
|
| 79 |
54 78
|
eqtrd |
|
| 80 |
|
coass |
|
| 81 |
79 80
|
eqtr4di |
|
| 82 |
|
fof |
|
| 83 |
3 82
|
syl |
|
| 84 |
83
|
ad2antrr |
|
| 85 |
|
fcoi2 |
|
| 86 |
84 85
|
syl |
|
| 87 |
86
|
eqcomd |
|
| 88 |
67 69 72 74 77 81 87
|
reu2eqd |
|
| 89 |
37 40 65 88
|
2fcoidinvd |
|
| 90 |
89 38
|
eqeltrd |
|
| 91 |
28 90
|
rexlimddv |
|
| 92 |
|
ishmeo |
|
| 93 |
16 91 92
|
sylanbrc |
|
| 94 |
|
simprr |
|
| 95 |
15 93 94
|
reximssdv |
|
| 96 |
|
eqtr2 |
|
| 97 |
2
|
adantr |
|
| 98 |
30
|
adantr |
|
| 99 |
33
|
adantr |
|
| 100 |
|
simprl |
|
| 101 |
|
hmeof1o2 |
|
| 102 |
98 99 100 101
|
syl3anc |
|
| 103 |
|
f1ofn |
|
| 104 |
102 103
|
syl |
|
| 105 |
|
simprr |
|
| 106 |
|
hmeof1o2 |
|
| 107 |
98 99 105 106
|
syl3anc |
|
| 108 |
|
f1ofn |
|
| 109 |
107 108
|
syl |
|
| 110 |
|
cocan2 |
|
| 111 |
97 104 109 110
|
syl3anc |
|
| 112 |
96 111
|
imbitrid |
|
| 113 |
112
|
ralrimivva |
|
| 114 |
|
coeq1 |
|
| 115 |
114
|
eqeq2d |
|
| 116 |
115
|
reu4 |
|
| 117 |
95 113 116
|
sylanbrc |
|