Metamath Proof Explorer


Theorem qusker

Description: The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypotheses qusker.b V=BaseM
qusker.f F=xVxM~QGG
qusker.n N=M/𝑠M~QGG
qusker.1 0˙=0N
Assertion qusker GNrmSGrpMF-10˙=G

Proof

Step Hyp Ref Expression
1 qusker.b V=BaseM
2 qusker.f F=xVxM~QGG
3 qusker.n N=M/𝑠M~QGG
4 qusker.1 0˙=0N
5 3 a1i GNrmSGrpMN=M/𝑠M~QGG
6 1 a1i GNrmSGrpMV=BaseM
7 ovex M~QGGV
8 7 a1i GNrmSGrpMM~QGGV
9 nsgsubg GNrmSGrpMGSubGrpM
10 subgrcl GSubGrpMMGrp
11 9 10 syl GNrmSGrpMMGrp
12 5 6 2 8 11 quslem GNrmSGrpMF:VontoV/M~QGG
13 fofn F:VontoV/M~QGGFFnV
14 fniniseg2 FFnVF-10˙=yV|Fy=0˙
15 12 13 14 3syl GNrmSGrpMF-10˙=yV|Fy=0˙
16 eqid 0M=0M
17 3 16 qus0 GNrmSGrpM0MM~QGG=0N
18 4 17 eqtr4id GNrmSGrpM0˙=0MM~QGG
19 eceq1 x=yxM~QGG=yM~QGG
20 ecexg M~QGGVyM~QGGV
21 7 20 ax-mp yM~QGGV
22 19 2 21 fvmpt yVFy=yM~QGG
23 18 22 eqeqan12d GNrmSGrpMyV0˙=Fy0MM~QGG=yM~QGG
24 eqcom 0˙=FyFy=0˙
25 24 a1i GNrmSGrpMyV0˙=FyFy=0˙
26 simpl GNrmSGrpMyVGNrmSGrpM
27 simpr GNrmSGrpMyVyV
28 1 16 grpidcl MGrp0MV
29 26 11 28 3syl GNrmSGrpMyV0MV
30 1 subgss GSubGrpMGV
31 9 30 syl GNrmSGrpMGV
32 eqid invgM=invgM
33 eqid +M=+M
34 eqid M~QGG=M~QGG
35 1 32 33 34 eqgval MGrpGV0MM~QGGy0MVyVinvgM0M+MyG
36 11 31 35 syl2anc GNrmSGrpM0MM~QGGy0MVyVinvgM0M+MyG
37 36 adantr GNrmSGrpMyV0MM~QGGy0MVyVinvgM0M+MyG
38 df-3an 0MVyVinvgM0M+MyG0MVyVinvgM0M+MyG
39 38 biancomi 0MVyVinvgM0M+MyGinvgM0M+MyG0MVyV
40 37 39 bitrdi GNrmSGrpMyV0MM~QGGyinvgM0M+MyG0MVyV
41 40 rbaibd GNrmSGrpMyV0MVyV0MM~QGGyinvgM0M+MyG
42 26 27 29 27 41 syl22anc GNrmSGrpMyV0MM~QGGyinvgM0M+MyG
43 1 34 eqger GSubGrpMM~QGGErV
44 9 43 syl GNrmSGrpMM~QGGErV
45 44 adantr GNrmSGrpMyVM~QGGErV
46 45 27 erth2 GNrmSGrpMyV0MM~QGGy0MM~QGG=yM~QGG
47 16 32 grpinvid MGrpinvgM0M=0M
48 26 11 47 3syl GNrmSGrpMyVinvgM0M=0M
49 48 oveq1d GNrmSGrpMyVinvgM0M+My=0M+My
50 1 33 16 grplid MGrpyV0M+My=y
51 11 50 sylan GNrmSGrpMyV0M+My=y
52 49 51 eqtrd GNrmSGrpMyVinvgM0M+My=y
53 52 eleq1d GNrmSGrpMyVinvgM0M+MyGyG
54 42 46 53 3bitr3d GNrmSGrpMyV0MM~QGG=yM~QGGyG
55 23 25 54 3bitr3d GNrmSGrpMyVFy=0˙yG
56 55 rabbidva GNrmSGrpMyV|Fy=0˙=yV|yG
57 dfss7 GVyV|yG=G
58 31 57 sylib GNrmSGrpMyV|yG=G
59 15 56 58 3eqtrd GNrmSGrpMF-10˙=G