Metamath Proof Explorer


Theorem r1pquslmic

Description: The univariate polynomial remainder ring ( F "s P ) is module isomorphic with the quotient ring. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1plmhm.1 P=Poly1R
r1plmhm.2 U=BaseP
r1plmhm.4 E=rem1pR
r1plmhm.5 N=Unic1pR
r1plmhm.6 F=fUfEM
r1plmhm.9 φRRing
r1plmhm.10 φMN
r1pquslmic.0 0˙=0P
r1pquslmic.k K=F-10˙
r1pquslmic.q Q=P/𝑠P~QGK
Assertion r1pquslmic φQ𝑚F𝑠P

Proof

Step Hyp Ref Expression
1 r1plmhm.1 P=Poly1R
2 r1plmhm.2 U=BaseP
3 r1plmhm.4 E=rem1pR
4 r1plmhm.5 N=Unic1pR
5 r1plmhm.6 F=fUfEM
6 r1plmhm.9 φRRing
7 r1plmhm.10 φMN
8 r1pquslmic.0 0˙=0P
9 r1pquslmic.k K=F-10˙
10 r1pquslmic.q Q=P/𝑠P~QGK
11 eqidd φF𝑠P=F𝑠P
12 2 a1i φU=BaseP
13 eqid +P=+P
14 6 adantr φfURRing
15 simpr φfUfU
16 7 adantr φfUMN
17 3 1 2 4 r1pcl RRingfUMNfEMU
18 14 15 16 17 syl3anc φfUfEMU
19 18 5 fmptd φF:UU
20 fimadmfo F:UUF:UontoFU
21 19 20 syl φF:UontoFU
22 anass φaUbUφaUbU
23 simplr φaUbUfUqUFa=FfFb=FqFa=Ff
24 simpr φaUbUfUqUFa=FfFb=FqFb=Fq
25 23 24 oveq12d φaUbUfUqUFa=FfFb=FqFa+F𝑠PFb=Ff+F𝑠PFq
26 1 2 3 4 5 6 7 r1plmhm φFPLMHomF𝑠P
27 26 lmhmghmd φFPGrpHomF𝑠P
28 27 ad6antr φaUbUfUqUFa=FfFb=FqFPGrpHomF𝑠P
29 simp-6r φaUbUfUqUFa=FfFb=FqaU
30 simp-5r φaUbUfUqUFa=FfFb=FqbU
31 eqid +F𝑠P=+F𝑠P
32 2 13 31 ghmlin FPGrpHomF𝑠PaUbUFa+Pb=Fa+F𝑠PFb
33 28 29 30 32 syl3anc φaUbUfUqUFa=FfFb=FqFa+Pb=Fa+F𝑠PFb
34 simp-4r φaUbUfUqUFa=FfFb=FqfU
35 simpllr φaUbUfUqUFa=FfFb=FqqU
36 2 13 31 ghmlin FPGrpHomF𝑠PfUqUFf+Pq=Ff+F𝑠PFq
37 28 34 35 36 syl3anc φaUbUfUqUFa=FfFb=FqFf+Pq=Ff+F𝑠PFq
38 25 33 37 3eqtr4d φaUbUfUqUFa=FfFb=FqFa+Pb=Ff+Pq
39 38 expl φaUbUfUqUFa=FfFb=FqFa+Pb=Ff+Pq
40 39 anasss φaUbUfUqUFa=FfFb=FqFa+Pb=Ff+Pq
41 22 40 sylanbr φaUbUfUqUFa=FfFb=FqFa+Pb=Ff+Pq
42 41 3impa φaUbUfUqUFa=FfFb=FqFa+Pb=Ff+Pq
43 1 ply1ring RRingPRing
44 6 43 syl φPRing
45 44 ringgrpd φPGrp
46 45 grpmndd φPMnd
47 11 12 13 21 42 46 8 imasmnd φF𝑠PMndF0˙=0F𝑠P
48 47 simprd φF0˙=0F𝑠P
49 oveq1 f=0˙fEM=0˙EM
50 1 2 4 3 6 7 8 r1p0 φ0˙EM=0˙
51 49 50 sylan9eqr φf=0˙fEM=0˙
52 2 8 ring0cl PRing0˙U
53 44 52 syl φ0˙U
54 5 51 53 53 fvmptd2 φF0˙=0˙
55 48 54 eqtr3d φ0F𝑠P=0˙
56 55 sneqd φ0F𝑠P=0˙
57 56 imaeq2d φF-10F𝑠P=F-10˙
58 57 9 eqtr4di φF-10F𝑠P=K
59 58 oveq2d φP~QGF-10F𝑠P=P~QGK
60 59 oveq2d φP/𝑠P~QGF-10F𝑠P=P/𝑠P~QGK
61 60 10 eqtr4di φP/𝑠P~QGF-10F𝑠P=Q
62 eqid 0F𝑠P=0F𝑠P
63 eqid F-10F𝑠P=F-10F𝑠P
64 eqid P/𝑠P~QGF-10F𝑠P=P/𝑠P~QGF-10F𝑠P
65 19 ffnd φFFnU
66 fnima FFnUFU=ranF
67 65 66 syl φFU=ranF
68 1 fvexi PV
69 68 a1i φPV
70 11 12 21 69 imasbas φFU=BaseF𝑠P
71 67 70 eqtr3d φranF=BaseF𝑠P
72 62 26 63 64 71 lmicqusker φP/𝑠P~QGF-10F𝑠P𝑚F𝑠P
73 61 72 eqbrtrrd φQ𝑚F𝑠P