Metamath Proof Explorer


Theorem ramcl2lem

Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c C=aV,i0b𝒫a|b=i
ramval.t T=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
Assertion ramcl2lem M0RVF:R0MRamseyF=ifT=+∞supT<

Proof

Step Hyp Ref Expression
1 ramval.c C=aV,i0b𝒫a|b=i
2 ramval.t T=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
3 eqeq2 +∞=ifT=+∞supT<MRamseyF=+∞MRamseyF=ifT=+∞supT<
4 eqeq2 supT<=ifT=+∞supT<MRamseyF=supT<MRamseyF=ifT=+∞supT<
5 1 2 ramval M0RVF:R0MRamseyF=supT*<
6 infeq1 T=supT*<=sup*<
7 xrinf0 sup*<=+∞
8 6 7 eqtrdi T=supT*<=+∞
9 5 8 sylan9eq M0RVF:R0T=MRamseyF=+∞
10 df-ne T¬T=
11 5 adantr M0RVF:R0TMRamseyF=supT*<
12 xrltso <Or*
13 12 a1i M0RVF:R0T<Or*
14 2 ssrab3 T0
15 nn0ssre 0
16 14 15 sstri T
17 nn0uz 0=0
18 14 17 sseqtri T0
19 18 a1i M0RVF:R0T0
20 infssuzcl T0TsupT<T
21 19 20 sylan M0RVF:R0TsupT<T
22 16 21 sselid M0RVF:R0TsupT<
23 22 rexrd M0RVF:R0TsupT<*
24 22 adantr M0RVF:R0TzTsupT<
25 16 a1i M0RVF:R0TT
26 25 sselda M0RVF:R0TzTz
27 simpr M0RVF:R0TzTzT
28 infssuzle T0zTsupT<z
29 18 27 28 sylancr M0RVF:R0TzTsupT<z
30 24 26 29 lensymd M0RVF:R0TzT¬z<supT<
31 13 23 21 30 infmin M0RVF:R0TsupT*<=supT<
32 11 31 eqtrd M0RVF:R0TMRamseyF=supT<
33 10 32 sylan2br M0RVF:R0¬T=MRamseyF=supT<
34 3 4 9 33 ifbothda M0RVF:R0MRamseyF=ifT=+∞supT<