Description: A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | refssfne.1 | |
|
refssfne.2 | |
||
Assertion | refssfne | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refssfne.1 | |
|
2 | refssfne.2 | |
|
3 | refrel | |
|
4 | 3 | brrelex2i | |
5 | 4 | adantl | |
6 | 3 | brrelex1i | |
7 | 6 | adantl | |
8 | unexg | |
|
9 | 5 7 8 | syl2anc | |
10 | ssun2 | |
|
11 | 10 | a1i | |
12 | ssun1 | |
|
13 | 12 | a1i | |
14 | eqimss2 | |
|
15 | 14 | adantr | |
16 | ssequn2 | |
|
17 | 15 16 | sylib | |
18 | 17 | eqcomd | |
19 | 1 2 | uneq12i | |
20 | uniun | |
|
21 | 19 20 | eqtr4i | |
22 | 1 21 | fness | |
23 | 9 13 18 22 | syl3anc | |
24 | elun | |
|
25 | ssid | |
|
26 | sseq2 | |
|
27 | 26 | rspcev | |
28 | 25 27 | mpan2 | |
29 | 28 | a1i | |
30 | refssex | |
|
31 | 30 | ex | |
32 | 31 | adantl | |
33 | 29 32 | jaod | |
34 | 24 33 | biimtrid | |
35 | 34 | ralrimiv | |
36 | 21 1 | isref | |
37 | 9 36 | syl | |
38 | 18 35 37 | mpbir2and | |
39 | 11 23 38 | jca32 | |
40 | sseq2 | |
|
41 | breq2 | |
|
42 | breq1 | |
|
43 | 41 42 | anbi12d | |
44 | 40 43 | anbi12d | |
45 | 44 | spcegv | |
46 | 9 39 45 | sylc | |
47 | 46 | ex | |
48 | vex | |
|
49 | 48 | ssex | |
50 | 49 | ad2antrl | |
51 | simprl | |
|
52 | simpl | |
|
53 | eqid | |
|
54 | 53 1 | refbas | |
55 | 54 | adantl | |
56 | 55 | ad2antll | |
57 | 52 56 | eqtr3d | |
58 | 2 53 | ssref | |
59 | 50 51 57 58 | syl3anc | |
60 | simprrr | |
|
61 | reftr | |
|
62 | 59 60 61 | syl2anc | |
63 | 62 | ex | |
64 | 63 | exlimdv | |
65 | 47 64 | impbid | |