Metamath Proof Explorer


Theorem refssfne

Description: A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses refssfne.1 X=A
refssfne.2 Y=B
Assertion refssfne X=YBRefAcBcAFneccRefA

Proof

Step Hyp Ref Expression
1 refssfne.1 X=A
2 refssfne.2 Y=B
3 refrel RelRef
4 3 brrelex2i BRefAAV
5 4 adantl X=YBRefAAV
6 3 brrelex1i BRefABV
7 6 adantl X=YBRefABV
8 unexg AVBVABV
9 5 7 8 syl2anc X=YBRefAABV
10 ssun2 BAB
11 10 a1i X=YBRefABAB
12 ssun1 AAB
13 12 a1i X=YBRefAAAB
14 eqimss2 X=YYX
15 14 adantr X=YBRefAYX
16 ssequn2 YXXY=X
17 15 16 sylib X=YBRefAXY=X
18 17 eqcomd X=YBRefAX=XY
19 1 2 uneq12i XY=AB
20 uniun AB=AB
21 19 20 eqtr4i XY=AB
22 1 21 fness ABVAABX=XYAFneAB
23 9 13 18 22 syl3anc X=YBRefAAFneAB
24 elun xABxAxB
25 ssid xx
26 sseq2 y=xxyxx
27 26 rspcev xAxxyAxy
28 25 27 mpan2 xAyAxy
29 28 a1i X=YBRefAxAyAxy
30 refssex BRefAxByAxy
31 30 ex BRefAxByAxy
32 31 adantl X=YBRefAxByAxy
33 29 32 jaod X=YBRefAxAxByAxy
34 24 33 biimtrid X=YBRefAxAByAxy
35 34 ralrimiv X=YBRefAxAByAxy
36 21 1 isref ABVABRefAX=XYxAByAxy
37 9 36 syl X=YBRefAABRefAX=XYxAByAxy
38 18 35 37 mpbir2and X=YBRefAABRefA
39 11 23 38 jca32 X=YBRefABABAFneABABRefA
40 sseq2 c=ABBcBAB
41 breq2 c=ABAFnecAFneAB
42 breq1 c=ABcRefAABRefA
43 41 42 anbi12d c=ABAFneccRefAAFneABABRefA
44 40 43 anbi12d c=ABBcAFneccRefABABAFneABABRefA
45 44 spcegv ABVBABAFneABABRefAcBcAFneccRefA
46 9 39 45 sylc X=YBRefAcBcAFneccRefA
47 46 ex X=YBRefAcBcAFneccRefA
48 vex cV
49 48 ssex BcBV
50 49 ad2antrl X=YBcAFneccRefABV
51 simprl X=YBcAFneccRefABc
52 simpl X=YBcAFneccRefAX=Y
53 eqid c=c
54 53 1 refbas cRefAX=c
55 54 adantl AFneccRefAX=c
56 55 ad2antll X=YBcAFneccRefAX=c
57 52 56 eqtr3d X=YBcAFneccRefAY=c
58 2 53 ssref BVBcY=cBRefc
59 50 51 57 58 syl3anc X=YBcAFneccRefABRefc
60 simprrr X=YBcAFneccRefAcRefA
61 reftr BRefccRefABRefA
62 59 60 61 syl2anc X=YBcAFneccRefABRefA
63 62 ex X=YBcAFneccRefABRefA
64 63 exlimdv X=YcBcAFneccRefABRefA
65 47 64 impbid X=YBRefAcBcAFneccRefA