Metamath Proof Explorer


Theorem relexpindlem

Description: Principle of transitive induction, finite and non-class version. The first three hypotheses give various existences, the next three give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Proof shortened by Peter Mazsa, 2-Oct-2022) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypotheses relexpindlem.1 ηRelR
relexpindlem.2 ηSV
relexpindlem.3 i=Sφχ
relexpindlem.4 i=xφψ
relexpindlem.5 i=jφθ
relexpindlem.6 ηχ
relexpindlem.7 ηjRxθψ
Assertion relexpindlem ηn0SRrnxψ

Proof

Step Hyp Ref Expression
1 relexpindlem.1 ηRelR
2 relexpindlem.2 ηSV
3 relexpindlem.3 i=Sφχ
4 relexpindlem.4 i=xφψ
5 relexpindlem.5 i=jφθ
6 relexpindlem.6 ηχ
7 relexpindlem.7 ηjRxθψ
8 eleq1 k=0k000
9 8 anbi2d k=0ηRVk0ηRV00
10 oveq2 k=0Rrk=Rr0
11 10 breqd k=0SRrkxSRr0x
12 11 imbi1d k=0SRrkxψSRr0xψ
13 12 albidv k=0xSRrkxψxSRr0xψ
14 9 13 imbi12d k=0ηRVk0xSRrkxψηRV00xSRr0xψ
15 eleq1 k=lk0l0
16 15 anbi2d k=lηRVk0ηRVl0
17 oveq2 k=lRrk=Rrl
18 17 breqd k=lSRrkxSRrlx
19 18 imbi1d k=lSRrkxψSRrlxψ
20 19 albidv k=lxSRrkxψxSRrlxψ
21 16 20 imbi12d k=lηRVk0xSRrkxψηRVl0xSRrlxψ
22 eleq1 k=l+1k0l+10
23 22 anbi2d k=l+1ηRVk0ηRVl+10
24 oveq2 k=l+1Rrk=Rrl+1
25 24 breqd k=l+1SRrkxSRrl+1x
26 25 imbi1d k=l+1SRrkxψSRrl+1xψ
27 26 albidv k=l+1xSRrkxψxSRrl+1xψ
28 23 27 imbi12d k=l+1ηRVk0xSRrkxψηRVl+10xSRrl+1xψ
29 eleq1 k=nk0n0
30 29 anbi2d k=nηRVk0ηRVn0
31 oveq2 k=nRrk=Rrn
32 31 breqd k=nSRrkxSRrnx
33 32 imbi1d k=nSRrkxψSRrnxψ
34 33 albidv k=nxSRrkxψxSRrnxψ
35 30 34 imbi12d k=nηRVk0xSRrkxψηRVn0xSRrnxψ
36 1 anim1ci ηRVRVRelR
37 36 adantr ηRV00RVRelR
38 relexp0 RVRelRRr0=IR
39 37 38 syl ηRV00Rr0=IR
40 6 adantr ηRVχ
41 simpl ηRV00ηRV
42 2 ad2antrl χηRVSV
43 simprl i=SηRVφi=SηRV
44 43 40 jccil i=SηRVφi=SχηRV
45 44 expcom ηRVφi=Si=SχηRV
46 45 expcom φi=SηRVi=SχηRV
47 46 expcom i=SφηRVi=SχηRV
48 47 3imp1 i=SφηRVi=SχηRV
49 48 expcom i=Si=SφηRVχηRV
50 simprr χηRVi=Si=S
51 3 ad2antll χηRVi=Sφχ
52 51 bicomd χηRVi=Sχφ
53 anbi1 χφχηRVi=SφηRVi=S
54 simpl φηRVi=Sφ
55 53 54 syl6bi χφχηRVi=Sφ
56 52 55 mpcom χηRVi=Sφ
57 simprl χηRVi=SηRV
58 50 56 57 3jca χηRVi=Si=SφηRV
59 58 anassrs χηRVi=Si=SφηRV
60 59 expcom i=SχηRVi=SφηRV
61 49 60 impbid i=Si=SφηRVχηRV
62 61 spcegv SVχηRVii=SφηRV
63 42 62 mpcom χηRVii=SφηRV
64 40 41 63 syl2an2r ηRV00ii=SφηRV
65 simpl SIRxii=SφηRVηRV00SIRx
66 df-br SIRxSxIR
67 65 66 sylib SIRxii=SφηRVηRV00SxIR
68 vex xV
69 68 opelresi SxIRSRSxI
70 67 69 sylib SIRxii=SφηRVηRV00SRSxI
71 simplr SRSxISIRxii=SφηRVηRV00SxI
72 df-br SIxSxI
73 71 72 sylibr SRSxISIRxii=SφηRVηRV00SIx
74 68 ideq SIxS=x
75 73 74 sylib SRSxISIRxii=SφηRVηRV00S=x
76 70 75 mpancom SIRxii=SφηRVηRV00S=x
77 breq1 S=xSIRxxIRx
78 eqeq2 S=xi=Si=x
79 78 3anbi1d S=xi=SφηRVi=xφηRV
80 79 exbidv S=xii=SφηRVii=xφηRV
81 80 anbi1d S=xii=SφηRVηRV00ii=xφηRVηRV00
82 77 81 anbi12d S=xSIRxii=SφηRVηRV00xIRxii=xφηRVηRV00
83 simprl ηRVφi=xφ
84 4 ad2antll ηRVφi=xφψ
85 83 84 mpbid ηRVφi=xψ
86 85 expcom φi=xηRVψ
87 86 expcom i=xφηRVψ
88 87 3imp i=xφηRVψ
89 88 exlimiv ii=xφηRVψ
90 89 ad2antrl xIRxii=xφηRVηRV00ψ
91 82 90 syl6bi S=xSIRxii=SφηRVηRV00ψ
92 76 91 mpcom SIRxii=SφηRVηRV00ψ
93 92 expcom ii=SφηRVηRV00SIRxψ
94 64 93 mpancom ηRV00SIRxψ
95 breq Rr0=IRSRr0xSIRx
96 95 imbi1d Rr0=IRSRr0xψSIRxψ
97 94 96 imbitrrid Rr0=IRηRV00SRr0xψ
98 39 97 mpcom ηRV00SRr0xψ
99 98 alrimiv ηRV00xSRr0xψ
100 breq2 i=xSRrliSRrlx
101 100 4 imbi12d i=xSRrliφSRrlxψ
102 101 cbvalvw iSRrliφxSRrlxψ
103 102 bicomi xSRrlxψiSRrliφ
104 imbi2 xSRrlxψiSRrliφηRVl0xSRrlxψηRVl0iSRrliφ
105 104 anbi1d xSRrlxψiSRrliφηRVl0xSRrlxψl0ηRVl0iSRrliφl0
106 105 anbi2d xSRrlxψiSRrliφl+10ηRVl0xSRrlxψl0l+10ηRVl0iSRrliφl0
107 106 anbi2d xSRrlxψiSRrliφηRVl+10ηRVl0xSRrlxψl0ηRVl+10ηRVl0iSRrliφl0
108 1 adantr ηRVRelR
109 108 adantr ηRVl+10ηRVl0iSRrliφl0RelR
110 simprrr ηRVl+10ηRVl0iSRrliφl0l0
111 109 110 relexpsucld ηRVl+10ηRVl0iSRrliφl0Rrl+1=RRrl
112 simpl SRRrlxηRVl+10ηRVl0iSRrliφl0SRRrlx
113 2 adantr ηRVSV
114 113 ad2antrl SRRrlxηRVl+10ηRVl0iSRrliφl0SV
115 brcog SVxVSRRrlxjSRrljjRx
116 114 68 115 sylancl SRRrlxηRVl+10ηRVl0iSRrliφl0SRRrlxjSRrljjRx
117 112 116 mpbid SRRrlxηRVl+10ηRVl0iSRrliφl0jSRrljjRx
118 simprl SRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxηRV
119 simprrl l+10ηRVl0iSRrliφl0SRrljjRxl0
120 119 ad2antll SRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxl0
121 simprl l+10ηRVl0iSRrliφl0SRrljjRxηRVl0iSRrliφ
122 121 ad2antll SRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxηRVl0iSRrliφ
123 118 120 122 mp2and SRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxiSRrliφ
124 simprrl iSRrliφSRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxηRV
125 simprrr ηRVl0iSRrliφl0SRrljjRxjRx
126 125 ad2antll ηRVl+10ηRVl0iSRrliφl0SRrljjRxjRx
127 126 ad2antll iSRrliφSRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxjRx
128 breq2 i=jSRrliSRrlj
129 128 5 imbi12d i=jSRrliφSRrljθ
130 129 cbvalvw iSRrliφjSRrljθ
131 id iSRrliφjSRrljθiSRrliφjSRrljθ
132 imbi2 iSRrliφjSRrljθηRVl0iSRrliφηRVl0jSRrljθ
133 132 anbi1d iSRrliφjSRrljθηRVl0iSRrliφl0SRrljjRxηRVl0jSRrljθl0SRrljjRx
134 133 anbi2d iSRrliφjSRrljθl+10ηRVl0iSRrliφl0SRrljjRxl+10ηRVl0jSRrljθl0SRrljjRx
135 134 anbi2d iSRrliφjSRrljθηRVl+10ηRVl0iSRrliφl0SRrljjRxηRVl+10ηRVl0jSRrljθl0SRrljjRx
136 135 anbi2d iSRrliφjSRrljθSRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxSRRrlxηRVl+10ηRVl0jSRrljθl0SRrljjRx
137 131 136 anbi12d iSRrliφjSRrljθiSRrliφSRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxjSRrljθSRRrlxηRVl+10ηRVl0jSRrljθl0SRrljjRx
138 simprrl ηRVl0jSRrljθl0SRrljjRxSRrlj
139 138 ad2antll ηRVl+10ηRVl0jSRrljθl0SRrljjRxSRrlj
140 139 ad2antll jSRrljθSRRrlxηRVl+10ηRVl0jSRrljθl0SRrljjRxSRrlj
141 sp jSRrljθSRrljθ
142 141 adantr jSRrljθSRRrlxηRVl+10ηRVl0jSRrljθl0SRrljjRxSRrljθ
143 140 142 mpd jSRrljθSRRrlxηRVl+10ηRVl0jSRrljθl0SRrljjRxθ
144 137 143 syl6bi iSRrliφjSRrljθiSRrliφSRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxθ
145 130 144 ax-mp iSRrliφSRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxθ
146 7 adantr ηRVjRxθψ
147 124 127 145 146 syl3c iSRrliφSRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxψ
148 123 147 mpancom SRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxψ
149 148 expcom ηRVl+10ηRVl0iSRrliφl0SRrljjRxSRRrlxψ
150 149 expcom l+10ηRVl0iSRrliφl0SRrljjRxηRVSRRrlxψ
151 150 expcom ηRVl0iSRrliφl0SRrljjRxl+10ηRVSRRrlxψ
152 151 anassrs ηRVl0iSRrliφl0SRrljjRxl+10ηRVSRRrlxψ
153 152 impcom l+10ηRVl0iSRrliφl0SRrljjRxηRVSRRrlxψ
154 153 anassrs l+10ηRVl0iSRrliφl0SRrljjRxηRVSRRrlxψ
155 154 impcom ηRVl+10ηRVl0iSRrliφl0SRrljjRxSRRrlxψ
156 155 anassrs ηRVl+10ηRVl0iSRrliφl0SRrljjRxSRRrlxψ
157 156 impcom SRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxψ
158 157 anassrs SRRrlxηRVl+10ηRVl0iSRrliφl0SRrljjRxψ
159 117 158 exlimddv SRRrlxηRVl+10ηRVl0iSRrliφl0ψ
160 159 expcom ηRVl+10ηRVl0iSRrliφl0SRRrlxψ
161 breq Rrl+1=RRrlSRrl+1xSRRrlx
162 161 imbi1d Rrl+1=RRrlSRrl+1xψSRRrlxψ
163 160 162 imbitrrid Rrl+1=RRrlηRVl+10ηRVl0iSRrliφl0SRrl+1xψ
164 111 163 mpcom ηRVl+10ηRVl0iSRrliφl0SRrl+1xψ
165 164 alrimiv ηRVl+10ηRVl0iSRrliφl0xSRrl+1xψ
166 107 165 syl6bi xSRrlxψiSRrliφηRVl+10ηRVl0xSRrlxψl0xSRrl+1xψ
167 103 166 ax-mp ηRVl+10ηRVl0xSRrlxψl0xSRrl+1xψ
168 167 anassrs ηRVl+10ηRVl0xSRrlxψl0xSRrl+1xψ
169 168 expcom ηRVl0xSRrlxψl0ηRVl+10xSRrl+1xψ
170 169 expcom l0ηRVl0xSRrlxψηRVl+10xSRrl+1xψ
171 14 21 28 35 99 170 nn0ind n0ηRVn0xSRrnxψ
172 171 anabsi7 ηRVn0xSRrnxψ
173 172 19.21bi ηRVn0SRrnxψ
174 173 exp31 ηRVn0SRrnxψ
175 reldmrelexp Reldomr
176 175 ovprc1 ¬RVRrn=
177 176 breqd ¬RVSRrnxSx
178 br0 ¬Sx
179 178 pm2.21i Sxψ
180 177 179 syl6bi ¬RVSRrnxψ
181 180 a1d ¬RVn0SRrnxψ
182 174 181 pm2.61d1 ηn0SRrnxψ