Metamath Proof Explorer


Theorem requad1

Description: A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023)

Ref Expression
Hypotheses requad2.a φA
requad2.z φA0
requad2.b φB
requad2.c φC
requad2.d φD=B24AC
Assertion requad1 φ∃!xAx2+Bx+C=0D=0

Proof

Step Hyp Ref Expression
1 requad2.a φA
2 requad2.z φA0
3 requad2.b φB
4 requad2.c φC
5 requad2.d φD=B24AC
6 1 recnd φA
7 6 ad2antrr φ0DxA
8 2 ad2antrr φ0DxA0
9 3 recnd φB
10 9 ad2antrr φ0DxB
11 4 recnd φC
12 11 ad2antrr φ0DxC
13 recn xx
14 13 adantl φ0Dxx
15 5 ad2antrr φ0DxD=B24AC
16 7 8 10 12 14 15 quad φ0DxAx2+Bx+C=0x=-B+D2Ax=-B-D2A
17 16 reubidva φ0D∃!xAx2+Bx+C=0∃!xx=-B+D2Ax=-B-D2A
18 3 renegcld φB
19 18 adantr φ0DB
20 3 resqcld φB2
21 4re 4
22 21 a1i φ4
23 1 4 remulcld φAC
24 22 23 remulcld φ4AC
25 20 24 resubcld φB24AC
26 5 25 eqeltrd φD
27 resqrtcl D0DD
28 26 27 sylan φ0DD
29 19 28 readdcld φ0D-B+D
30 2re 2
31 30 a1i φ2
32 31 1 remulcld φ2A
33 32 adantr φ0D2A
34 2cnd φ2
35 2ne0 20
36 35 a1i φ20
37 34 6 36 2 mulne0d φ2A0
38 37 adantr φ0D2A0
39 29 33 38 redivcld φ0D-B+D2A
40 19 28 resubcld φ0D-B-D
41 40 33 38 redivcld φ0D-B-D2A
42 euoreqb -B+D2A-B-D2A∃!xx=-B+D2Ax=-B-D2A-B+D2A=-B-D2A
43 39 41 42 syl2anc φ0D∃!xx=-B+D2Ax=-B-D2A-B+D2A=-B-D2A
44 9 negcld φB
45 26 recnd φD
46 45 sqrtcld φD
47 32 recnd φ2A
48 44 46 47 37 divdird φ-B+D2A=B2A+D2A
49 48 adantr φ0D-B+D2A=B2A+D2A
50 44 46 47 37 divsubdird φ-B-D2A=B2AD2A
51 50 adantr φ0D-B-D2A=B2AD2A
52 44 47 37 divcld φB2A
53 52 adantr φ0DB2A
54 46 47 37 divcld φD2A
55 54 adantr φ0DD2A
56 53 55 negsubd φ0DB2A+D2A=B2AD2A
57 46 adantr φ0DD
58 47 adantr φ0D2A
59 57 58 38 divnegd φ0DD2A=D2A
60 59 oveq2d φ0DB2A+D2A=B2A+D2A
61 51 56 60 3eqtr2d φ0D-B-D2A=B2A+D2A
62 49 61 eqeq12d φ0D-B+D2A=-B-D2AB2A+D2A=B2A+D2A
63 46 negcld φD
64 63 47 37 divcld φD2A
65 64 adantr φ0DD2A
66 53 55 65 addcand φ0DB2A+D2A=B2A+D2AD2A=D2A
67 div11 DD2A2A0D2A=D2AD=D
68 46 63 47 37 67 syl112anc φD2A=D2AD=D
69 68 adantr φ0DD2A=D2AD=D
70 57 eqnegd φ0DD=DD=0
71 sqrt00 D0DD=0D=0
72 26 71 sylan φ0DD=0D=0
73 70 72 bitrd φ0DD=DD=0
74 66 69 73 3bitrd φ0DB2A+D2A=B2A+D2AD=0
75 62 74 bitrd φ0D-B+D2A=-B-D2AD=0
76 17 43 75 3bitrd φ0D∃!xAx2+Bx+C=0D=0
77 76 expcom 0Dφ∃!xAx2+Bx+C=0D=0
78 1 2 3 4 5 requad01 φxAx2+Bx+C=00D
79 78 notbid φ¬xAx2+Bx+C=0¬0D
80 79 biimparc ¬0Dφ¬xAx2+Bx+C=0
81 reurex ∃!xAx2+Bx+C=0xAx2+Bx+C=0
82 80 81 nsyl ¬0Dφ¬∃!xAx2+Bx+C=0
83 82 pm2.21d ¬0Dφ∃!xAx2+Bx+C=0D=0
84 0red φ0
85 26 84 ltnled φD<0¬0D
86 85 biimparc ¬0DφD<0
87 86 lt0ne0d ¬0DφD0
88 eqneqall D=0D0∃!xAx2+Bx+C=0
89 87 88 syl5com ¬0DφD=0∃!xAx2+Bx+C=0
90 83 89 impbid ¬0Dφ∃!xAx2+Bx+C=0D=0
91 90 ex ¬0Dφ∃!xAx2+Bx+C=0D=0
92 77 91 pm2.61i φ∃!xAx2+Bx+C=0D=0