Step |
Hyp |
Ref |
Expression |
1 |
|
restcld.1 |
|
2 |
|
id |
|
3 |
1
|
topopn |
|
4 |
|
ssexg |
|
5 |
2 3 4
|
syl2anr |
|
6 |
|
resttop |
|
7 |
5 6
|
syldan |
|
8 |
|
eqid |
|
9 |
8
|
iscld |
|
10 |
7 9
|
syl |
|
11 |
1
|
restuni |
|
12 |
11
|
sseq2d |
|
13 |
11
|
difeq1d |
|
14 |
13
|
eleq1d |
|
15 |
12 14
|
anbi12d |
|
16 |
|
elrest |
|
17 |
5 16
|
syldan |
|
18 |
17
|
anbi2d |
|
19 |
1
|
opncld |
|
20 |
19
|
ad5ant14 |
|
21 |
|
incom |
|
22 |
|
df-ss |
|
23 |
22
|
biimpi |
|
24 |
21 23
|
eqtrid |
|
25 |
24
|
ad4antlr |
|
26 |
25
|
difeq1d |
|
27 |
|
difeq2 |
|
28 |
|
difindi |
|
29 |
|
difid |
|
30 |
29
|
uneq2i |
|
31 |
|
un0 |
|
32 |
28 30 31
|
3eqtri |
|
33 |
27 32
|
eqtrdi |
|
34 |
33
|
adantl |
|
35 |
|
dfss4 |
|
36 |
35
|
biimpi |
|
37 |
36
|
ad3antlr |
|
38 |
26 34 37
|
3eqtr2rd |
|
39 |
21
|
difeq1i |
|
40 |
|
indif2 |
|
41 |
|
incom |
|
42 |
39 40 41
|
3eqtr2i |
|
43 |
38 42
|
eqtrdi |
|
44 |
|
ineq1 |
|
45 |
44
|
rspceeqv |
|
46 |
20 43 45
|
syl2anc |
|
47 |
46
|
rexlimdva2 |
|
48 |
47
|
expimpd |
|
49 |
18 48
|
sylbid |
|
50 |
|
difindi |
|
51 |
29
|
uneq2i |
|
52 |
|
un0 |
|
53 |
50 51 52
|
3eqtri |
|
54 |
|
difin2 |
|
55 |
54
|
adantl |
|
56 |
53 55
|
eqtrid |
|
57 |
56
|
adantr |
|
58 |
|
simpll |
|
59 |
5
|
adantr |
|
60 |
1
|
cldopn |
|
61 |
60
|
adantl |
|
62 |
|
elrestr |
|
63 |
58 59 61 62
|
syl3anc |
|
64 |
57 63
|
eqeltrd |
|
65 |
|
inss2 |
|
66 |
64 65
|
jctil |
|
67 |
|
sseq1 |
|
68 |
|
difeq2 |
|
69 |
68
|
eleq1d |
|
70 |
67 69
|
anbi12d |
|
71 |
66 70
|
syl5ibrcom |
|
72 |
71
|
rexlimdva |
|
73 |
49 72
|
impbid |
|
74 |
10 15 73
|
3bitr2d |
|