Description: The nonnegative real numbers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 6-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rge0srg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring | |
|
2 | ringcmn | |
|
3 | 1 2 | ax-mp | |
4 | rege0subm | |
|
5 | eqid | |
|
6 | 5 | submcmn | |
7 | 3 4 6 | mp2an | |
8 | rge0ssre | |
|
9 | ax-resscn | |
|
10 | 8 9 | sstri | |
11 | 1re | |
|
12 | 0le1 | |
|
13 | ltpnf | |
|
14 | 11 13 | ax-mp | |
15 | 0re | |
|
16 | pnfxr | |
|
17 | elico2 | |
|
18 | 15 16 17 | mp2an | |
19 | 11 12 14 18 | mpbir3an | |
20 | ge0mulcl | |
|
21 | 20 | rgen2 | |
22 | eqid | |
|
23 | 22 | ringmgp | |
24 | cnfldbas | |
|
25 | 22 24 | mgpbas | |
26 | cnfld1 | |
|
27 | 22 26 | ringidval | |
28 | cnfldmul | |
|
29 | 22 28 | mgpplusg | |
30 | 25 27 29 | issubm | |
31 | 1 23 30 | mp2b | |
32 | 10 19 21 31 | mpbir3an | |
33 | eqid | |
|
34 | 33 | submmnd | |
35 | 32 34 | ax-mp | |
36 | simpll | |
|
37 | 10 36 | sselid | |
38 | simplr | |
|
39 | 10 38 | sselid | |
40 | simpr | |
|
41 | 10 40 | sselid | |
42 | 37 39 41 | adddid | |
43 | 37 39 41 | adddird | |
44 | 42 43 | jca | |
45 | 44 | ralrimiva | |
46 | 45 | ralrimiva | |
47 | 10 | sseli | |
48 | 47 | mul02d | |
49 | 47 | mul01d | |
50 | 46 48 49 | jca32 | |
51 | 50 | rgen | |
52 | 5 24 | ressbas2 | |
53 | 10 52 | ax-mp | |
54 | cnfldex | |
|
55 | ovex | |
|
56 | 5 22 | mgpress | |
57 | 54 55 56 | mp2an | |
58 | cnfldadd | |
|
59 | 5 58 | ressplusg | |
60 | 55 59 | ax-mp | |
61 | 5 28 | ressmulr | |
62 | 55 61 | ax-mp | |
63 | ringmnd | |
|
64 | 1 63 | ax-mp | |
65 | 0e0icopnf | |
|
66 | cnfld0 | |
|
67 | 5 24 66 | ress0g | |
68 | 64 65 10 67 | mp3an | |
69 | 53 57 60 62 68 | issrg | |
70 | 7 35 51 69 | mpbir3an | |