Metamath Proof Explorer


Theorem rge0srg

Description: The nonnegative real numbers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Assertion rge0srg fld𝑠0+∞SRing

Proof

Step Hyp Ref Expression
1 cnring fldRing
2 ringcmn fldRingfldCMnd
3 1 2 ax-mp fldCMnd
4 rege0subm 0+∞SubMndfld
5 eqid fld𝑠0+∞=fld𝑠0+∞
6 5 submcmn fldCMnd0+∞SubMndfldfld𝑠0+∞CMnd
7 3 4 6 mp2an fld𝑠0+∞CMnd
8 rge0ssre 0+∞
9 ax-resscn
10 8 9 sstri 0+∞
11 1re 1
12 0le1 01
13 ltpnf 11<+∞
14 11 13 ax-mp 1<+∞
15 0re 0
16 pnfxr +∞*
17 elico2 0+∞*10+∞1011<+∞
18 15 16 17 mp2an 10+∞1011<+∞
19 11 12 14 18 mpbir3an 10+∞
20 ge0mulcl x0+∞y0+∞xy0+∞
21 20 rgen2 x0+∞y0+∞xy0+∞
22 eqid mulGrpfld=mulGrpfld
23 22 ringmgp fldRingmulGrpfldMnd
24 cnfldbas =Basefld
25 22 24 mgpbas =BasemulGrpfld
26 cnfld1 1=1fld
27 22 26 ringidval 1=0mulGrpfld
28 cnfldmul ×=fld
29 22 28 mgpplusg ×=+mulGrpfld
30 25 27 29 issubm mulGrpfldMnd0+∞SubMndmulGrpfld0+∞10+∞x0+∞y0+∞xy0+∞
31 1 23 30 mp2b 0+∞SubMndmulGrpfld0+∞10+∞x0+∞y0+∞xy0+∞
32 10 19 21 31 mpbir3an 0+∞SubMndmulGrpfld
33 eqid mulGrpfld𝑠0+∞=mulGrpfld𝑠0+∞
34 33 submmnd 0+∞SubMndmulGrpfldmulGrpfld𝑠0+∞Mnd
35 32 34 ax-mp mulGrpfld𝑠0+∞Mnd
36 simpll x0+∞y0+∞z0+∞x0+∞
37 10 36 sselid x0+∞y0+∞z0+∞x
38 simplr x0+∞y0+∞z0+∞y0+∞
39 10 38 sselid x0+∞y0+∞z0+∞y
40 simpr x0+∞y0+∞z0+∞z0+∞
41 10 40 sselid x0+∞y0+∞z0+∞z
42 37 39 41 adddid x0+∞y0+∞z0+∞xy+z=xy+xz
43 37 39 41 adddird x0+∞y0+∞z0+∞x+yz=xz+yz
44 42 43 jca x0+∞y0+∞z0+∞xy+z=xy+xzx+yz=xz+yz
45 44 ralrimiva x0+∞y0+∞z0+∞xy+z=xy+xzx+yz=xz+yz
46 45 ralrimiva x0+∞y0+∞z0+∞xy+z=xy+xzx+yz=xz+yz
47 10 sseli x0+∞x
48 47 mul02d x0+∞0x=0
49 47 mul01d x0+∞x0=0
50 46 48 49 jca32 x0+∞y0+∞z0+∞xy+z=xy+xzx+yz=xz+yz0x=0x0=0
51 50 rgen x0+∞y0+∞z0+∞xy+z=xy+xzx+yz=xz+yz0x=0x0=0
52 5 24 ressbas2 0+∞0+∞=Basefld𝑠0+∞
53 10 52 ax-mp 0+∞=Basefld𝑠0+∞
54 cnfldex fldV
55 ovex 0+∞V
56 5 22 mgpress fldV0+∞VmulGrpfld𝑠0+∞=mulGrpfld𝑠0+∞
57 54 55 56 mp2an mulGrpfld𝑠0+∞=mulGrpfld𝑠0+∞
58 cnfldadd +=+fld
59 5 58 ressplusg 0+∞V+=+fld𝑠0+∞
60 55 59 ax-mp +=+fld𝑠0+∞
61 5 28 ressmulr 0+∞V×=fld𝑠0+∞
62 55 61 ax-mp ×=fld𝑠0+∞
63 ringmnd fldRingfldMnd
64 1 63 ax-mp fldMnd
65 0e0icopnf 00+∞
66 cnfld0 0=0fld
67 5 24 66 ress0g fldMnd00+∞0+∞0=0fld𝑠0+∞
68 64 65 10 67 mp3an 0=0fld𝑠0+∞
69 53 57 60 62 68 issrg fld𝑠0+∞SRingfld𝑠0+∞CMndmulGrpfld𝑠0+∞Mndx0+∞y0+∞z0+∞xy+z=xy+xzx+yz=xz+yz0x=0x0=0
70 7 35 51 69 mpbir3an fld𝑠0+∞SRing