| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpreimaprmidl.p |  | 
						
							| 2 |  | rhmrcl1 |  | 
						
							| 3 | 2 | ad2antlr |  | 
						
							| 4 |  | rhmrcl2 |  | 
						
							| 5 |  | prmidlidl |  | 
						
							| 6 | 4 5 | sylan |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 | rhmpreimaidl |  | 
						
							| 9 | 6 8 | syldan |  | 
						
							| 10 | 9 | adantll |  | 
						
							| 11 | 4 | adantr |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 12 13 | prmidlnr |  | 
						
							| 15 | 4 14 | sylan |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 12 16 | pridln1 |  | 
						
							| 18 | 11 6 15 17 | syl3anc |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 16 | rhm1 |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 22 12 | rhmf |  | 
						
							| 24 | 23 | ffnd |  | 
						
							| 25 | 24 | ad2antrr |  | 
						
							| 26 | 22 19 | ringidcl |  | 
						
							| 27 | 2 26 | syl |  | 
						
							| 28 | 27 | ad2antrr |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 28 29 | eleqtrrd |  | 
						
							| 31 |  | elpreima |  | 
						
							| 32 | 31 | biimpa |  | 
						
							| 33 | 25 30 32 | syl2anc |  | 
						
							| 34 | 33 | simprd |  | 
						
							| 35 | 21 34 | eqeltrrd |  | 
						
							| 36 | 18 35 | mtand |  | 
						
							| 37 | 36 | neqned |  | 
						
							| 38 | 37 | adantll |  | 
						
							| 39 |  | simp-5l |  | 
						
							| 40 |  | simp-4r |  | 
						
							| 41 |  | simp-5r |  | 
						
							| 42 | 41 23 | syl |  | 
						
							| 43 |  | simpllr |  | 
						
							| 44 | 42 43 | ffvelcdmd |  | 
						
							| 45 |  | simplr |  | 
						
							| 46 | 42 45 | ffvelcdmd |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 22 47 13 | rhmmul |  | 
						
							| 49 | 41 43 45 48 | syl3anc |  | 
						
							| 50 | 24 | ad5antlr |  | 
						
							| 51 |  | simpr |  | 
						
							| 52 |  | elpreima |  | 
						
							| 53 | 52 | simplbda |  | 
						
							| 54 | 50 51 53 | syl2anc |  | 
						
							| 55 | 49 54 | eqeltrrd |  | 
						
							| 56 | 12 13 | prmidlc |  | 
						
							| 57 | 39 40 44 46 55 56 | syl23anc |  | 
						
							| 58 | 50 | adantr |  | 
						
							| 59 | 43 | adantr |  | 
						
							| 60 |  | simpr |  | 
						
							| 61 | 58 59 60 | elpreimad |  | 
						
							| 62 | 61 | ex |  | 
						
							| 63 | 50 | adantr |  | 
						
							| 64 |  | simpllr |  | 
						
							| 65 |  | simpr |  | 
						
							| 66 | 63 64 65 | elpreimad |  | 
						
							| 67 | 66 | ex |  | 
						
							| 68 | 62 67 | orim12d |  | 
						
							| 69 | 57 68 | mpd |  | 
						
							| 70 | 69 | ex |  | 
						
							| 71 | 70 | anasss |  | 
						
							| 72 | 71 | ralrimivva |  | 
						
							| 73 | 22 47 | prmidl2 |  | 
						
							| 74 | 3 10 38 72 73 | syl22anc |  | 
						
							| 75 | 74 1 | eleqtrrdi |  |