| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmqusker.1 |  | 
						
							| 2 |  | rhmqusker.f |  | 
						
							| 3 |  | rhmqusker.k |  | 
						
							| 4 |  | rhmqusker.q |  | 
						
							| 5 |  | rhmquskerlem.j |  | 
						
							| 6 |  | rhmquskerlem.2 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | rhmrcl1 |  | 
						
							| 13 | 2 12 | syl |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 1 | kerlidl |  | 
						
							| 16 | 2 15 | syl |  | 
						
							| 17 | 3 16 | eqeltrid |  | 
						
							| 18 | 14 | crng2idl |  | 
						
							| 19 | 6 18 | syl |  | 
						
							| 20 | 17 19 | eleqtrd |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 4 21 22 | qus1 |  | 
						
							| 24 | 13 20 23 | syl2anc |  | 
						
							| 25 | 24 | simpld |  | 
						
							| 26 |  | rhmrcl2 |  | 
						
							| 27 | 2 26 | syl |  | 
						
							| 28 |  | rhmghm |  | 
						
							| 29 | 2 28 | syl |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 22 | ringidcl |  | 
						
							| 32 | 13 31 | syl |  | 
						
							| 33 | 1 29 3 4 5 32 | ghmquskerlem1 |  | 
						
							| 34 | 24 | simprd |  | 
						
							| 35 | 34 | fveq2d |  | 
						
							| 36 | 22 9 | rhm1 |  | 
						
							| 37 | 2 36 | syl |  | 
						
							| 38 | 33 35 37 | 3eqtr3d |  | 
						
							| 39 | 2 | ad6antr |  | 
						
							| 40 | 4 | a1i |  | 
						
							| 41 |  | eqidd |  | 
						
							| 42 |  | ovexd |  | 
						
							| 43 | 40 41 42 6 | qusbas |  | 
						
							| 44 | 1 | ghmker |  | 
						
							| 45 | 29 44 | syl |  | 
						
							| 46 | 3 45 | eqeltrid |  | 
						
							| 47 |  | nsgsubg |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 | 30 48 | eqger |  | 
						
							| 50 | 46 47 49 | 3syl |  | 
						
							| 51 | 50 | qsss |  | 
						
							| 52 | 43 51 | eqsstrrd |  | 
						
							| 53 | 52 | sselda |  | 
						
							| 54 | 53 | elpwid |  | 
						
							| 55 | 54 | ad5antr |  | 
						
							| 56 |  | simp-4r |  | 
						
							| 57 | 55 56 | sseldd |  | 
						
							| 58 | 52 | sselda |  | 
						
							| 59 | 58 | elpwid |  | 
						
							| 60 | 59 | adantlr |  | 
						
							| 61 | 60 | ad4antr |  | 
						
							| 62 |  | simplr |  | 
						
							| 63 | 61 62 | sseldd |  | 
						
							| 64 |  | eqid |  | 
						
							| 65 | 30 64 11 | rhmmul |  | 
						
							| 66 | 39 57 63 65 | syl3anc |  | 
						
							| 67 | 50 | ad6antr |  | 
						
							| 68 |  | simp-6r |  | 
						
							| 69 | 43 | ad6antr |  | 
						
							| 70 | 68 69 | eleqtrrd |  | 
						
							| 71 |  | qsel |  | 
						
							| 72 | 67 70 56 71 | syl3anc |  | 
						
							| 73 |  | simp-5r |  | 
						
							| 74 | 73 69 | eleqtrrd |  | 
						
							| 75 |  | qsel |  | 
						
							| 76 | 67 74 62 75 | syl3anc |  | 
						
							| 77 | 72 76 | oveq12d |  | 
						
							| 78 | 6 | ad6antr |  | 
						
							| 79 | 17 | ad6antr |  | 
						
							| 80 | 4 30 64 10 78 79 57 63 | qusmulcrng |  | 
						
							| 81 | 77 80 | eqtr2d |  | 
						
							| 82 | 81 | fveq2d |  | 
						
							| 83 | 39 28 | syl |  | 
						
							| 84 | 39 12 | syl |  | 
						
							| 85 | 30 64 84 57 63 | ringcld |  | 
						
							| 86 | 1 83 3 4 5 85 | ghmquskerlem1 |  | 
						
							| 87 | 82 86 | eqtr3d |  | 
						
							| 88 |  | simpllr |  | 
						
							| 89 |  | simpr |  | 
						
							| 90 | 88 89 | oveq12d |  | 
						
							| 91 | 66 87 90 | 3eqtr4d |  | 
						
							| 92 | 29 | ad4antr |  | 
						
							| 93 |  | simpllr |  | 
						
							| 94 | 1 92 3 4 5 93 | ghmquskerlem2 |  | 
						
							| 95 | 91 94 | r19.29a |  | 
						
							| 96 | 29 | ad2antrr |  | 
						
							| 97 |  | simplr |  | 
						
							| 98 | 1 96 3 4 5 97 | ghmquskerlem2 |  | 
						
							| 99 | 95 98 | r19.29a |  | 
						
							| 100 | 99 | anasss |  | 
						
							| 101 | 1 29 3 4 5 | ghmquskerlem3 |  | 
						
							| 102 | 7 8 9 10 11 25 27 38 100 101 | isrhm2d |  |