Metamath Proof Explorer


Theorem rhmquskerlem

Description: The mapping J induced by a ring homomorphism F from the quotient group Q over F 's kernel K is a ring homomorphism. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses rhmqusker.1 0˙=0H
rhmqusker.f φFGRingHomH
rhmqusker.k K=F-10˙
rhmqusker.q Q=G/𝑠G~QGK
rhmquskerlem.j J=qBaseQFq
rhmquskerlem.2 φGCRing
Assertion rhmquskerlem φJQRingHomH

Proof

Step Hyp Ref Expression
1 rhmqusker.1 0˙=0H
2 rhmqusker.f φFGRingHomH
3 rhmqusker.k K=F-10˙
4 rhmqusker.q Q=G/𝑠G~QGK
5 rhmquskerlem.j J=qBaseQFq
6 rhmquskerlem.2 φGCRing
7 eqid BaseQ=BaseQ
8 eqid 1Q=1Q
9 eqid 1H=1H
10 eqid Q=Q
11 eqid H=H
12 rhmrcl1 FGRingHomHGRing
13 2 12 syl φGRing
14 eqid LIdealG=LIdealG
15 14 1 kerlidl FGRingHomHF-10˙LIdealG
16 2 15 syl φF-10˙LIdealG
17 3 16 eqeltrid φKLIdealG
18 14 crng2idl GCRingLIdealG=2IdealG
19 6 18 syl φLIdealG=2IdealG
20 17 19 eleqtrd φK2IdealG
21 eqid 2IdealG=2IdealG
22 eqid 1G=1G
23 4 21 22 qus1 GRingK2IdealGQRing1GG~QGK=1Q
24 13 20 23 syl2anc φQRing1GG~QGK=1Q
25 24 simpld φQRing
26 rhmrcl2 FGRingHomHHRing
27 2 26 syl φHRing
28 rhmghm FGRingHomHFGGrpHomH
29 2 28 syl φFGGrpHomH
30 eqid BaseG=BaseG
31 30 22 ringidcl GRing1GBaseG
32 13 31 syl φ1GBaseG
33 1 29 3 4 5 32 ghmquskerlem1 φJ1GG~QGK=F1G
34 24 simprd φ1GG~QGK=1Q
35 34 fveq2d φJ1GG~QGK=J1Q
36 22 9 rhm1 FGRingHomHF1G=1H
37 2 36 syl φF1G=1H
38 33 35 37 3eqtr3d φJ1Q=1H
39 2 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyFGRingHomH
40 4 a1i φQ=G/𝑠G~QGK
41 eqidd φBaseG=BaseG
42 ovexd φG~QGKV
43 40 41 42 6 qusbas φBaseG/G~QGK=BaseQ
44 1 ghmker FGGrpHomHF-10˙NrmSGrpG
45 29 44 syl φF-10˙NrmSGrpG
46 3 45 eqeltrid φKNrmSGrpG
47 nsgsubg KNrmSGrpGKSubGrpG
48 eqid G~QGK=G~QGK
49 30 48 eqger KSubGrpGG~QGKErBaseG
50 46 47 49 3syl φG~QGKErBaseG
51 50 qsss φBaseG/G~QGK𝒫BaseG
52 43 51 eqsstrrd φBaseQ𝒫BaseG
53 52 sselda φrBaseQr𝒫BaseG
54 53 elpwid φrBaseQrBaseG
55 54 ad5antr φrBaseQsBaseQxrJr=FxysJs=FyrBaseG
56 simp-4r φrBaseQsBaseQxrJr=FxysJs=Fyxr
57 55 56 sseldd φrBaseQsBaseQxrJr=FxysJs=FyxBaseG
58 52 sselda φsBaseQs𝒫BaseG
59 58 elpwid φsBaseQsBaseG
60 59 adantlr φrBaseQsBaseQsBaseG
61 60 ad4antr φrBaseQsBaseQxrJr=FxysJs=FysBaseG
62 simplr φrBaseQsBaseQxrJr=FxysJs=Fyys
63 61 62 sseldd φrBaseQsBaseQxrJr=FxysJs=FyyBaseG
64 eqid G=G
65 30 64 11 rhmmul FGRingHomHxBaseGyBaseGFxGy=FxHFy
66 39 57 63 65 syl3anc φrBaseQsBaseQxrJr=FxysJs=FyFxGy=FxHFy
67 50 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyG~QGKErBaseG
68 simp-6r φrBaseQsBaseQxrJr=FxysJs=FyrBaseQ
69 43 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyBaseG/G~QGK=BaseQ
70 68 69 eleqtrrd φrBaseQsBaseQxrJr=FxysJs=FyrBaseG/G~QGK
71 qsel G~QGKErBaseGrBaseG/G~QGKxrr=xG~QGK
72 67 70 56 71 syl3anc φrBaseQsBaseQxrJr=FxysJs=Fyr=xG~QGK
73 simp-5r φrBaseQsBaseQxrJr=FxysJs=FysBaseQ
74 73 69 eleqtrrd φrBaseQsBaseQxrJr=FxysJs=FysBaseG/G~QGK
75 qsel G~QGKErBaseGsBaseG/G~QGKyss=yG~QGK
76 67 74 62 75 syl3anc φrBaseQsBaseQxrJr=FxysJs=Fys=yG~QGK
77 72 76 oveq12d φrBaseQsBaseQxrJr=FxysJs=FyrQs=xG~QGKQyG~QGK
78 6 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyGCRing
79 17 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyKLIdealG
80 4 30 64 10 78 79 57 63 qusmul φrBaseQsBaseQxrJr=FxysJs=FyxG~QGKQyG~QGK=xGyG~QGK
81 77 80 eqtr2d φrBaseQsBaseQxrJr=FxysJs=FyxGyG~QGK=rQs
82 81 fveq2d φrBaseQsBaseQxrJr=FxysJs=FyJxGyG~QGK=JrQs
83 39 28 syl φrBaseQsBaseQxrJr=FxysJs=FyFGGrpHomH
84 39 12 syl φrBaseQsBaseQxrJr=FxysJs=FyGRing
85 30 64 84 57 63 ringcld φrBaseQsBaseQxrJr=FxysJs=FyxGyBaseG
86 1 83 3 4 5 85 ghmquskerlem1 φrBaseQsBaseQxrJr=FxysJs=FyJxGyG~QGK=FxGy
87 82 86 eqtr3d φrBaseQsBaseQxrJr=FxysJs=FyJrQs=FxGy
88 simpllr φrBaseQsBaseQxrJr=FxysJs=FyJr=Fx
89 simpr φrBaseQsBaseQxrJr=FxysJs=FyJs=Fy
90 88 89 oveq12d φrBaseQsBaseQxrJr=FxysJs=FyJrHJs=FxHFy
91 66 87 90 3eqtr4d φrBaseQsBaseQxrJr=FxysJs=FyJrQs=JrHJs
92 29 ad4antr φrBaseQsBaseQxrJr=FxFGGrpHomH
93 simpllr φrBaseQsBaseQxrJr=FxsBaseQ
94 1 92 3 4 5 93 ghmquskerlem2 φrBaseQsBaseQxrJr=FxysJs=Fy
95 91 94 r19.29a φrBaseQsBaseQxrJr=FxJrQs=JrHJs
96 29 ad2antrr φrBaseQsBaseQFGGrpHomH
97 simplr φrBaseQsBaseQrBaseQ
98 1 96 3 4 5 97 ghmquskerlem2 φrBaseQsBaseQxrJr=Fx
99 95 98 r19.29a φrBaseQsBaseQJrQs=JrHJs
100 99 anasss φrBaseQsBaseQJrQs=JrHJs
101 1 29 3 4 5 ghmquskerlem3 φJQGrpHomH
102 7 8 9 10 11 25 27 38 100 101 isrhm2d φJQRingHomH