Description: Express the predicate: The limit of complex number function F is C , or F converges to C , in the real sense. This means that for any real x , no matter how small, there always exists a number y such that the absolute difference of any number in the function beyond y and the limit is less than x . (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlim.1 | |
|
rlim.2 | |
||
rlim.4 | |
||
Assertion | rlim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlim.1 | |
|
2 | rlim.2 | |
|
3 | rlim.4 | |
|
4 | rlimrel | |
|
5 | 4 | brrelex2i | |
6 | 5 | a1i | |
7 | elex | |
|
8 | 7 | ad2antrl | |
9 | 8 | a1i | |
10 | cnex | |
|
11 | reex | |
|
12 | elpm2r | |
|
13 | 10 11 12 | mpanl12 | |
14 | 1 2 13 | syl2anc | |
15 | eleq1 | |
|
16 | eleq1 | |
|
17 | 15 16 | bi2anan9 | |
18 | simpl | |
|
19 | 18 | dmeqd | |
20 | fveq1 | |
|
21 | oveq12 | |
|
22 | 20 21 | sylan | |
23 | 22 | fveq2d | |
24 | 23 | breq1d | |
25 | 24 | imbi2d | |
26 | 19 25 | raleqbidv | |
27 | 26 | rexbidv | |
28 | 27 | ralbidv | |
29 | 17 28 | anbi12d | |
30 | df-rlim | |
|
31 | 29 30 | brabga | |
32 | anass | |
|
33 | 31 32 | bitrdi | |
34 | 33 | ex | |
35 | 14 34 | syl | |
36 | 6 9 35 | pm5.21ndd | |
37 | 14 | biantrurd | |
38 | 1 | fdmd | |
39 | 38 | raleqdv | |
40 | 3 | fvoveq1d | |
41 | 40 | breq1d | |
42 | 41 | imbi2d | |
43 | 42 | ralbidva | |
44 | 39 43 | bitrd | |
45 | 44 | rexbidv | |
46 | 45 | ralbidv | |
47 | 46 | anbi2d | |
48 | 36 37 47 | 3bitr2d | |