Metamath Proof Explorer


Theorem rlim

Description: Express the predicate: The limit of complex number function F is C , or F converges to C , in the real sense. This means that for any real x , no matter how small, there always exists a number y such that the absolute difference of any number in the function beyond y and the limit is less than x . (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses rlim.1 φF:A
rlim.2 φA
rlim.4 φzAFz=B
Assertion rlim φFCCx+yzAyzBC<x

Proof

Step Hyp Ref Expression
1 rlim.1 φF:A
2 rlim.2 φA
3 rlim.4 φzAFz=B
4 rlimrel Rel
5 4 brrelex2i FCCV
6 5 a1i φFCCV
7 elex CCV
8 7 ad2antrl F𝑝𝑚Cx+yzdomFyzFzC<xCV
9 8 a1i φF𝑝𝑚Cx+yzdomFyzFzC<xCV
10 cnex V
11 reex V
12 elpm2r VVF:AAF𝑝𝑚
13 10 11 12 mpanl12 F:AAF𝑝𝑚
14 1 2 13 syl2anc φF𝑝𝑚
15 eleq1 f=Ff𝑝𝑚F𝑝𝑚
16 eleq1 w=CwC
17 15 16 bi2anan9 f=Fw=Cf𝑝𝑚wF𝑝𝑚C
18 simpl f=Fw=Cf=F
19 18 dmeqd f=Fw=Cdomf=domF
20 fveq1 f=Ffz=Fz
21 oveq12 fz=Fzw=Cfzw=FzC
22 20 21 sylan f=Fw=Cfzw=FzC
23 22 fveq2d f=Fw=Cfzw=FzC
24 23 breq1d f=Fw=Cfzw<xFzC<x
25 24 imbi2d f=Fw=Cyzfzw<xyzFzC<x
26 19 25 raleqbidv f=Fw=Czdomfyzfzw<xzdomFyzFzC<x
27 26 rexbidv f=Fw=Cyzdomfyzfzw<xyzdomFyzFzC<x
28 27 ralbidv f=Fw=Cx+yzdomfyzfzw<xx+yzdomFyzFzC<x
29 17 28 anbi12d f=Fw=Cf𝑝𝑚wx+yzdomfyzfzw<xF𝑝𝑚Cx+yzdomFyzFzC<x
30 df-rlim =fw|f𝑝𝑚wx+yzdomfyzfzw<x
31 29 30 brabga F𝑝𝑚CVFCF𝑝𝑚Cx+yzdomFyzFzC<x
32 anass F𝑝𝑚Cx+yzdomFyzFzC<xF𝑝𝑚Cx+yzdomFyzFzC<x
33 31 32 bitrdi F𝑝𝑚CVFCF𝑝𝑚Cx+yzdomFyzFzC<x
34 33 ex F𝑝𝑚CVFCF𝑝𝑚Cx+yzdomFyzFzC<x
35 14 34 syl φCVFCF𝑝𝑚Cx+yzdomFyzFzC<x
36 6 9 35 pm5.21ndd φFCF𝑝𝑚Cx+yzdomFyzFzC<x
37 14 biantrurd φCx+yzdomFyzFzC<xF𝑝𝑚Cx+yzdomFyzFzC<x
38 1 fdmd φdomF=A
39 38 raleqdv φzdomFyzFzC<xzAyzFzC<x
40 3 fvoveq1d φzAFzC=BC
41 40 breq1d φzAFzC<xBC<x
42 41 imbi2d φzAyzFzC<xyzBC<x
43 42 ralbidva φzAyzFzC<xzAyzBC<x
44 39 43 bitrd φzdomFyzFzC<xzAyzBC<x
45 44 rexbidv φyzdomFyzFzC<xyzAyzBC<x
46 45 ralbidv φx+yzdomFyzFzC<xx+yzAyzBC<x
47 46 anbi2d φCx+yzdomFyzFzC<xCx+yzAyzBC<x
48 36 37 47 3bitr2d φFCCx+yzAyzBC<x