Metamath Proof Explorer


Theorem rngccatidALTV

Description: Lemma for rngccatALTV . (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngccatALTV.c C=RngCatALTVU
rngccatidALTV.b B=BaseC
Assertion rngccatidALTV UVCCatIdC=xBIBasex

Proof

Step Hyp Ref Expression
1 rngccatALTV.c C=RngCatALTVU
2 rngccatidALTV.b B=BaseC
3 2 a1i UVB=BaseC
4 eqidd UVHomC=HomC
5 eqidd UVcompC=compC
6 1 fvexi CV
7 6 a1i UVCV
8 biid wBxByBzBfwHomCxgxHomCyhyHomCzwBxByBzBfwHomCxgxHomCyhyHomCz
9 simpl UVxBUV
10 1 2 9 rngcbasALTV UVxBB=URng
11 eleq2 B=URngxBxURng
12 elin xURngxUxRng
13 12 simprbi xURngxRng
14 11 13 syl6bi B=URngxBxRng
15 14 com12 xBB=URngxRng
16 15 adantl UVxBB=URngxRng
17 10 16 mpd UVxBxRng
18 eqid Basex=Basex
19 18 idrnghm xRngIBasexxRngHomox
20 17 19 syl UVxBIBasexxRngHomox
21 eqid HomC=HomC
22 simpr UVxBxB
23 1 2 9 21 22 22 rngchomALTV UVxBxHomCx=xRngHomox
24 20 23 eleqtrrd UVxBIBasexxHomCx
25 simpl UVwBxByBzBfwHomCxgxHomCyhyHomCzUV
26 eqid compC=compC
27 simpl wBxBwB
28 27 3ad2ant1 wBxByBzBfwHomCxgxHomCyhyHomCzwB
29 28 adantl UVwBxByBzBfwHomCxgxHomCyhyHomCzwB
30 simpr wBxBxB
31 30 3ad2ant1 wBxByBzBfwHomCxgxHomCyhyHomCzxB
32 31 adantl UVwBxByBzBfwHomCxgxHomCyhyHomCzxB
33 simp1 UVyBzBwBxBUV
34 27 3ad2ant3 UVyBzBwBxBwB
35 30 3ad2ant3 UVyBzBwBxBxB
36 1 2 33 21 34 35 rngchomALTV UVyBzBwBxBwHomCx=wRngHomox
37 36 eleq2d UVyBzBwBxBfwHomCxfwRngHomox
38 37 biimpd UVyBzBwBxBfwHomCxfwRngHomox
39 38 3exp UVyBzBwBxBfwHomCxfwRngHomox
40 39 com14 fwHomCxyBzBwBxBUVfwRngHomox
41 40 3ad2ant1 fwHomCxgxHomCyhyHomCzyBzBwBxBUVfwRngHomox
42 41 com13 wBxByBzBfwHomCxgxHomCyhyHomCzUVfwRngHomox
43 42 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVfwRngHomox
44 43 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzfwRngHomox
45 20 expcom xBUVIBasexxRngHomox
46 45 adantl wBxBUVIBasexxRngHomox
47 46 3ad2ant1 wBxByBzBfwHomCxgxHomCyhyHomCzUVIBasexxRngHomox
48 47 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzIBasexxRngHomox
49 1 2 25 26 29 32 32 44 48 rngccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzIBasexwxcompCxf=IBasexf
50 simpl UVwBxBUV
51 simprl UVwBxBwB
52 simprr UVwBxBxB
53 1 2 50 21 51 52 elrngchomALTV UVwBxBfwHomCxf:BasewBasex
54 53 ex UVwBxBfwHomCxf:BasewBasex
55 54 com13 fwHomCxwBxBUVf:BasewBasex
56 fcoi2 f:BasewBasexIBasexf=f
57 55 56 syl8 fwHomCxwBxBUVIBasexf=f
58 57 3ad2ant1 fwHomCxgxHomCyhyHomCzwBxBUVIBasexf=f
59 58 com12 wBxBfwHomCxgxHomCyhyHomCzUVIBasexf=f
60 59 a1d wBxByBzBfwHomCxgxHomCyhyHomCzUVIBasexf=f
61 60 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVIBasexf=f
62 61 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzIBasexf=f
63 49 62 eqtrd UVwBxByBzBfwHomCxgxHomCyhyHomCzIBasexwxcompCxf=f
64 simp3 gxHomCywBxByBzBUVUV
65 30 adantr wBxByBzBxB
66 65 3ad2ant2 gxHomCywBxByBzBUVxB
67 simprl wBxByBzByB
68 67 3ad2ant2 gxHomCywBxByBzBUVyB
69 46 adantr wBxByBzBUVIBasexxRngHomox
70 69 a1i gxHomCywBxByBzBUVIBasexxRngHomox
71 70 3imp gxHomCywBxByBzBUVIBasexxRngHomox
72 simpl UVwBxByBzBUV
73 65 adantl UVwBxByBzBxB
74 67 adantl UVwBxByBzByB
75 1 2 72 21 73 74 rngchomALTV UVwBxByBzBxHomCy=xRngHomoy
76 75 eleq2d UVwBxByBzBgxHomCygxRngHomoy
77 76 biimpd UVwBxByBzBgxHomCygxRngHomoy
78 77 ex UVwBxByBzBgxHomCygxRngHomoy
79 78 com13 gxHomCywBxByBzBUVgxRngHomoy
80 79 3imp gxHomCywBxByBzBUVgxRngHomoy
81 1 2 64 26 66 66 68 71 80 rngccoALTV gxHomCywBxByBzBUVgxxcompCyIBasex=gIBasex
82 1 2 72 21 73 74 elrngchomALTV UVwBxByBzBgxHomCyg:BasexBasey
83 82 ex UVwBxByBzBgxHomCyg:BasexBasey
84 83 com13 gxHomCywBxByBzBUVg:BasexBasey
85 84 3imp gxHomCywBxByBzBUVg:BasexBasey
86 fcoi1 g:BasexBaseygIBasex=g
87 85 86 syl gxHomCywBxByBzBUVgIBasex=g
88 81 87 eqtrd gxHomCywBxByBzBUVgxxcompCyIBasex=g
89 88 3exp gxHomCywBxByBzBUVgxxcompCyIBasex=g
90 89 3ad2ant2 fwHomCxgxHomCyhyHomCzwBxByBzBUVgxxcompCyIBasex=g
91 90 expdcom wBxByBzBfwHomCxgxHomCyhyHomCzUVgxxcompCyIBasex=g
92 91 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVgxxcompCyIBasex=g
93 92 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzgxxcompCyIBasex=g
94 simp2l UVyBzBwBxByB
95 1 2 33 21 35 94 rngchomALTV UVyBzBwBxBxHomCy=xRngHomoy
96 95 eleq2d UVyBzBwBxBgxHomCygxRngHomoy
97 96 biimpd UVyBzBwBxBgxHomCygxRngHomoy
98 97 3exp UVyBzBwBxBgxHomCygxRngHomoy
99 98 com14 gxHomCyyBzBwBxBUVgxRngHomoy
100 99 3ad2ant2 fwHomCxgxHomCyhyHomCzyBzBwBxBUVgxRngHomoy
101 100 com13 wBxByBzBfwHomCxgxHomCyhyHomCzUVgxRngHomoy
102 101 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVgxRngHomoy
103 102 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzgxRngHomoy
104 rnghmco gxRngHomoyfwRngHomoxgfwRngHomoy
105 103 44 104 syl2anc UVwBxByBzBfwHomCxgxHomCyhyHomCzgfwRngHomoy
106 simp2l wBxByBzBfwHomCxgxHomCyhyHomCzyB
107 106 adantl UVwBxByBzBfwHomCxgxHomCyhyHomCzyB
108 1 2 25 26 29 32 107 44 103 rngccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzgwxcompCyf=gf
109 1 2 25 21 29 107 rngchomALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzwHomCy=wRngHomoy
110 105 108 109 3eltr4d UVwBxByBzBfwHomCxgxHomCyhyHomCzgwxcompCyfwHomCy
111 coass hgf=hgf
112 simp2r wBxByBzBfwHomCxgxHomCyhyHomCzzB
113 112 adantl UVwBxByBzBfwHomCxgxHomCyhyHomCzzB
114 simp2r UVyBzBwBxBzB
115 1 2 33 21 94 114 rngchomALTV UVyBzBwBxByHomCz=yRngHomoz
116 115 eleq2d UVyBzBwBxBhyHomCzhyRngHomoz
117 116 biimpd UVyBzBwBxBhyHomCzhyRngHomoz
118 117 3exp UVyBzBwBxBhyHomCzhyRngHomoz
119 118 com14 hyHomCzyBzBwBxBUVhyRngHomoz
120 119 3ad2ant3 fwHomCxgxHomCyhyHomCzyBzBwBxBUVhyRngHomoz
121 120 com13 wBxByBzBfwHomCxgxHomCyhyHomCzUVhyRngHomoz
122 121 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVhyRngHomoz
123 122 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzhyRngHomoz
124 rnghmco hyRngHomozgxRngHomoyhgxRngHomoz
125 123 103 124 syl2anc UVwBxByBzBfwHomCxgxHomCyhyHomCzhgxRngHomoz
126 1 2 25 26 29 32 113 44 125 rngccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzhgwxcompCzf=hgf
127 1 2 25 26 29 107 113 105 123 rngccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzhwycompCzgf=hgf
128 111 126 127 3eqtr4a UVwBxByBzBfwHomCxgxHomCyhyHomCzhgwxcompCzf=hwycompCzgf
129 1 2 25 26 32 107 113 103 123 rngccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzg=hg
130 129 oveq1d UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzgwxcompCzf=hgwxcompCzf
131 108 oveq2d UVwBxByBzBfwHomCxgxHomCyhyHomCzhwycompCzgwxcompCyf=hwycompCzgf
132 128 130 131 3eqtr4d UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzgwxcompCzf=hwycompCzgwxcompCyf
133 3 4 5 7 8 24 63 93 110 132 iscatd2 UVCCatIdC=xBIBasex