| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|
| 2 |
|
rng2idlring.i |
|
| 3 |
|
rng2idlring.j |
|
| 4 |
|
rng2idlring.u |
|
| 5 |
|
rng2idlring.b |
|
| 6 |
|
rng2idlring.t |
|
| 7 |
|
rng2idlring.1 |
|
| 8 |
1
|
3ad2ant1 |
|
| 9 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
|
rnggrp |
|
| 12 |
1 11
|
syl |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
|
simp3 |
|
| 15 |
5 6
|
rngcl |
|
| 16 |
8 10 14 15
|
syl3anc |
|
| 17 |
|
eqid |
|
| 18 |
5 17
|
grpsubcl |
|
| 19 |
13 14 16 18
|
syl3anc |
|
| 20 |
|
eqid |
|
| 21 |
5 20
|
2idlss |
|
| 22 |
2 21
|
syl |
|
| 23 |
22
|
sselda |
|
| 24 |
23
|
3adant3 |
|
| 25 |
|
eqid |
|
| 26 |
5 25 6
|
rngdi |
|
| 27 |
8 10 19 24 26
|
syl13anc |
|
| 28 |
5 6 17 8 10 14 16
|
rngsubdi |
|
| 29 |
3 6
|
ressmulr |
|
| 30 |
2 29
|
syl |
|
| 31 |
30
|
oveqd |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
4
|
3ad2ant1 |
|
| 36 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
| 37 |
36
|
3adant2 |
|
| 38 |
33 34 7 35 37
|
ringlidmd |
|
| 39 |
32 38
|
eqtrd |
|
| 40 |
39
|
oveq2d |
|
| 41 |
|
eqid |
|
| 42 |
5 41 17
|
grpsubid |
|
| 43 |
13 16 42
|
syl2anc |
|
| 44 |
28 40 43
|
3eqtrd |
|
| 45 |
44
|
oveq1d |
|
| 46 |
5 6
|
rngcl |
|
| 47 |
8 10 24 46
|
syl3anc |
|
| 48 |
5 25 41 13 47
|
grplidd |
|
| 49 |
30
|
oveqd |
|
| 50 |
49
|
3ad2ant1 |
|
| 51 |
4
|
adantr |
|
| 52 |
2 3 33
|
2idlbas |
|
| 53 |
52
|
eqcomd |
|
| 54 |
53
|
eleq2d |
|
| 55 |
54
|
biimpa |
|
| 56 |
33 34 7 51 55
|
ringlidmd |
|
| 57 |
56
|
3adant3 |
|
| 58 |
48 50 57
|
3eqtrd |
|
| 59 |
27 45 58
|
3eqtrd |
|