Metamath Proof Explorer


Theorem rngqiprngimfolem

Description: Lemma for rngqiprngimfo . (Contributed by AV, 5-Mar-2025) (Proof shortened by AV, 24-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
Assertion rngqiprngimfolem φAICB1˙·˙C-R1˙·˙C+RA=A

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 1 3ad2ant1 φAICBRRng
9 1 2 3 4 5 6 7 rngqiprng1elbas φ1˙B
10 9 3ad2ant1 φAICB1˙B
11 rnggrp RRngRGrp
12 1 11 syl φRGrp
13 12 3ad2ant1 φAICBRGrp
14 simp3 φAICBCB
15 5 6 rngcl RRng1˙BCB1˙·˙CB
16 8 10 14 15 syl3anc φAICB1˙·˙CB
17 eqid -R=-R
18 5 17 grpsubcl RGrpCB1˙·˙CBC-R1˙·˙CB
19 13 14 16 18 syl3anc φAICBC-R1˙·˙CB
20 eqid 2IdealR=2IdealR
21 5 20 2idlss I2IdealRIB
22 2 21 syl φIB
23 22 sselda φAIAB
24 23 3adant3 φAICBAB
25 eqid +R=+R
26 5 25 6 rngdi RRng1˙BC-R1˙·˙CBAB1˙·˙C-R1˙·˙C+RA=1˙·˙C-R1˙·˙C+R1˙·˙A
27 8 10 19 24 26 syl13anc φAICB1˙·˙C-R1˙·˙C+RA=1˙·˙C-R1˙·˙C+R1˙·˙A
28 5 6 17 8 10 14 16 rngsubdi φAICB1˙·˙C-R1˙·˙C=1˙·˙C-R1˙·˙1˙·˙C
29 3 6 ressmulr I2IdealR·˙=J
30 2 29 syl φ·˙=J
31 30 oveqd φ1˙·˙1˙·˙C=1˙J1˙·˙C
32 31 3ad2ant1 φAICB1˙·˙1˙·˙C=1˙J1˙·˙C
33 eqid BaseJ=BaseJ
34 eqid J=J
35 4 3ad2ant1 φAICBJRing
36 1 2 3 4 5 6 7 rngqiprngghmlem1 φCB1˙·˙CBaseJ
37 36 3adant2 φAICB1˙·˙CBaseJ
38 33 34 7 35 37 ringlidmd φAICB1˙J1˙·˙C=1˙·˙C
39 32 38 eqtrd φAICB1˙·˙1˙·˙C=1˙·˙C
40 39 oveq2d φAICB1˙·˙C-R1˙·˙1˙·˙C=1˙·˙C-R1˙·˙C
41 eqid 0R=0R
42 5 41 17 grpsubid RGrp1˙·˙CB1˙·˙C-R1˙·˙C=0R
43 13 16 42 syl2anc φAICB1˙·˙C-R1˙·˙C=0R
44 28 40 43 3eqtrd φAICB1˙·˙C-R1˙·˙C=0R
45 44 oveq1d φAICB1˙·˙C-R1˙·˙C+R1˙·˙A=0R+R1˙·˙A
46 5 6 rngcl RRng1˙BAB1˙·˙AB
47 8 10 24 46 syl3anc φAICB1˙·˙AB
48 5 25 41 13 47 grplidd φAICB0R+R1˙·˙A=1˙·˙A
49 30 oveqd φ1˙·˙A=1˙JA
50 49 3ad2ant1 φAICB1˙·˙A=1˙JA
51 4 adantr φAIJRing
52 2 3 33 2idlbas φBaseJ=I
53 52 eqcomd φI=BaseJ
54 53 eleq2d φAIABaseJ
55 54 biimpa φAIABaseJ
56 33 34 7 51 55 ringlidmd φAI1˙JA=A
57 56 3adant3 φAICB1˙JA=A
58 48 50 57 3eqtrd φAICB0R+R1˙·˙A=A
59 27 45 58 3eqtrd φAICB1˙·˙C-R1˙·˙C+RA=A