Description: Lemma for rngqiprngimfo . (Contributed by AV, 5-Mar-2025) (Proof shortened by AV, 24-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
Assertion | rngqiprngimfolem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | 1 | 3ad2ant1 | |
9 | 1 2 3 4 5 6 7 | rngqiprng1elbas | |
10 | 9 | 3ad2ant1 | |
11 | rnggrp | |
|
12 | 1 11 | syl | |
13 | 12 | 3ad2ant1 | |
14 | simp3 | |
|
15 | 5 6 | rngcl | |
16 | 8 10 14 15 | syl3anc | |
17 | eqid | |
|
18 | 5 17 | grpsubcl | |
19 | 13 14 16 18 | syl3anc | |
20 | eqid | |
|
21 | 5 20 | 2idlss | |
22 | 2 21 | syl | |
23 | 22 | sselda | |
24 | 23 | 3adant3 | |
25 | eqid | |
|
26 | 5 25 6 | rngdi | |
27 | 8 10 19 24 26 | syl13anc | |
28 | 5 6 17 8 10 14 16 | rngsubdi | |
29 | 3 6 | ressmulr | |
30 | 2 29 | syl | |
31 | 30 | oveqd | |
32 | 31 | 3ad2ant1 | |
33 | eqid | |
|
34 | eqid | |
|
35 | 4 | 3ad2ant1 | |
36 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | |
37 | 36 | 3adant2 | |
38 | 33 34 7 35 37 | ringlidmd | |
39 | 32 38 | eqtrd | |
40 | 39 | oveq2d | |
41 | eqid | |
|
42 | 5 41 17 | grpsubid | |
43 | 13 16 42 | syl2anc | |
44 | 28 40 43 | 3eqtrd | |
45 | 44 | oveq1d | |
46 | 5 6 | rngcl | |
47 | 8 10 24 46 | syl3anc | |
48 | 5 25 41 13 47 | grplidd | |
49 | 30 | oveqd | |
50 | 49 | 3ad2ant1 | |
51 | 4 | adantr | |
52 | 2 3 33 | 2idlbas | |
53 | 52 | eqcomd | |
54 | 53 | eleq2d | |
55 | 54 | biimpa | |
56 | 33 34 7 51 55 | ringlidmd | |
57 | 56 | 3adant3 | |
58 | 48 50 57 | 3eqtrd | |
59 | 27 45 58 | 3eqtrd | |