Metamath Proof Explorer


Theorem rrhcn

Description: If the topology of R is Hausdorff, and R is a complete uniform space, then the canonical homomorphism from the real numbers to R is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018)

Ref Expression
Hypotheses rrhf.d D=distRB×B
rrhf.j J=topGenran.
rrhf.b B=BaseR
rrhf.k K=TopOpenR
rrhf.z Z=ℤModR
rrhf.1 φRDivRing
rrhf.2 φRNrmRing
rrhf.3 φZNrmMod
rrhf.4 φchrR=0
rrhf.5 φRCUnifSp
rrhf.6 φUnifStR=metUnifD
Assertion rrhcn φℝHomRJCnK

Proof

Step Hyp Ref Expression
1 rrhf.d D=distRB×B
2 rrhf.j J=topGenran.
3 rrhf.b B=BaseR
4 rrhf.k K=TopOpenR
5 rrhf.z Z=ℤModR
6 rrhf.1 φRDivRing
7 rrhf.2 φRNrmRing
8 rrhf.3 φZNrmMod
9 rrhf.4 φchrR=0
10 rrhf.5 φRCUnifSp
11 rrhf.6 φUnifStR=metUnifD
12 nrgngp RNrmRingRNrmGrp
13 ngpxms RNrmGrpR∞MetSp
14 7 12 13 3syl φR∞MetSp
15 xmstps R∞MetSpRTopSp
16 14 15 syl φRTopSp
17 2 4 rrhval RTopSpℝHomR=JCnExtKℚHomR
18 16 17 syl φℝHomR=JCnExtKℚHomR
19 rebase =Basefld
20 retopn topGenran.=TopOpenfld
21 2 20 eqtri J=TopOpenfld
22 eqid UnifStfld=UnifStfld
23 df-refld fld=fld𝑠
24 23 oveq1i fld𝑠=fld𝑠𝑠
25 reex V
26 qssre
27 ressabs Vfld𝑠𝑠=fld𝑠
28 25 26 27 mp2an fld𝑠𝑠=fld𝑠
29 24 28 eqtr2i fld𝑠=fld𝑠
30 29 fveq2i UnifStfld𝑠=UnifStfld𝑠
31 eqid UnifStR=UnifStR
32 recms fldCMetSp
33 cmsms fldCMetSpfldMetSp
34 mstps fldMetSpfldTopSp
35 32 33 34 mp2b fldTopSp
36 35 a1i φfldTopSp
37 recusp fldCUnifSp
38 cuspusp fldCUnifSpfldUnifSp
39 37 38 mp1i φfldUnifSp
40 4 3 1 xmstopn R∞MetSpK=MetOpenD
41 14 40 syl φK=MetOpenD
42 3 1 xmsxmet R∞MetSpD∞MetB
43 eqid MetOpenD=MetOpenD
44 43 methaus D∞MetBMetOpenDHaus
45 14 42 44 3syl φMetOpenDHaus
46 41 45 eqeltrd φKHaus
47 26 a1i φ
48 eqid fld𝑠=fld𝑠
49 eqid UnifStfld𝑠=UnifStfld𝑠
50 1 fveq2i metUnifD=metUnifdistRB×B
51 3 48 49 50 5 7 6 8 9 qqhucn φℚHomRUnifStfld𝑠uCnmetUnifD
52 11 eqcomd φmetUnifD=UnifStR
53 52 oveq2d φUnifStfld𝑠uCnmetUnifD=UnifStfld𝑠uCnUnifStR
54 51 53 eleqtrd φℚHomRUnifStfld𝑠uCnUnifStR
55 2 fveq2i clsJ=clstopGenran.
56 55 fveq1i clsJ=clstopGenran.
57 qdensere clstopGenran.=
58 56 57 eqtri clsJ=
59 58 a1i φclsJ=
60 19 3 21 4 22 30 31 36 39 16 10 46 47 54 59 ucnextcn φJCnExtKℚHomRJCnK
61 18 60 eqeltrd φℝHomRJCnK