Description: If the topology of R is Hausdorff, and R is a complete uniform space, then the canonical homomorphism from the real numbers to R is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrhf.d | |
|
rrhf.j | |
||
rrhf.b | |
||
rrhf.k | |
||
rrhf.z | |
||
rrhf.1 | |
||
rrhf.2 | |
||
rrhf.3 | |
||
rrhf.4 | |
||
rrhf.5 | |
||
rrhf.6 | |
||
Assertion | rrhcn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrhf.d | |
|
2 | rrhf.j | |
|
3 | rrhf.b | |
|
4 | rrhf.k | |
|
5 | rrhf.z | |
|
6 | rrhf.1 | |
|
7 | rrhf.2 | |
|
8 | rrhf.3 | |
|
9 | rrhf.4 | |
|
10 | rrhf.5 | |
|
11 | rrhf.6 | |
|
12 | nrgngp | |
|
13 | ngpxms | |
|
14 | 7 12 13 | 3syl | |
15 | xmstps | |
|
16 | 14 15 | syl | |
17 | 2 4 | rrhval | |
18 | 16 17 | syl | |
19 | rebase | |
|
20 | retopn | |
|
21 | 2 20 | eqtri | |
22 | eqid | |
|
23 | df-refld | |
|
24 | 23 | oveq1i | |
25 | reex | |
|
26 | qssre | |
|
27 | ressabs | |
|
28 | 25 26 27 | mp2an | |
29 | 24 28 | eqtr2i | |
30 | 29 | fveq2i | |
31 | eqid | |
|
32 | recms | |
|
33 | cmsms | |
|
34 | mstps | |
|
35 | 32 33 34 | mp2b | |
36 | 35 | a1i | |
37 | recusp | |
|
38 | cuspusp | |
|
39 | 37 38 | mp1i | |
40 | 4 3 1 | xmstopn | |
41 | 14 40 | syl | |
42 | 3 1 | xmsxmet | |
43 | eqid | |
|
44 | 43 | methaus | |
45 | 14 42 44 | 3syl | |
46 | 41 45 | eqeltrd | |
47 | 26 | a1i | |
48 | eqid | |
|
49 | eqid | |
|
50 | 1 | fveq2i | |
51 | 3 48 49 50 5 7 6 8 9 | qqhucn | |
52 | 11 | eqcomd | |
53 | 52 | oveq2d | |
54 | 51 53 | eleqtrd | |
55 | 2 | fveq2i | |
56 | 55 | fveq1i | |
57 | qdensere | |
|
58 | 56 57 | eqtri | |
59 | 58 | a1i | |
60 | 19 3 21 4 22 30 31 36 39 16 10 46 47 54 59 | ucnextcn | |
61 | 18 60 | eqeltrd | |