Metamath Proof Explorer


Theorem rspectopn

Description: The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024)

Ref Expression
Hypotheses rspecbas.1 No typesetting found for |- S = ( Spec ` R ) with typecode |-
rspectopn.1 I = LIdeal R
rspectopn.2 No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
rspectopn.3 J = ran i I j P | ¬ i j
Assertion rspectopn R Ring J = TopOpen S

Proof

Step Hyp Ref Expression
1 rspecbas.1 Could not format S = ( Spec ` R ) : No typesetting found for |- S = ( Spec ` R ) with typecode |-
2 rspectopn.1 I = LIdeal R
3 rspectopn.2 Could not format P = ( PrmIdeal ` R ) : No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
4 rspectopn.3 J = ran i I j P | ¬ i j
5 rspecval Could not format ( R e. Ring -> ( Spec ` R ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) : No typesetting found for |- ( R e. Ring -> ( Spec ` R ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) with typecode |-
6 3 oveq2i Could not format ( ( IDLsrg ` R ) |`s P ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( IDLsrg ` R ) |`s P ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) with typecode |-
7 5 1 6 3eqtr4g Could not format ( R e. Ring -> S = ( ( IDLsrg ` R ) |`s P ) ) : No typesetting found for |- ( R e. Ring -> S = ( ( IDLsrg ` R ) |`s P ) ) with typecode |-
8 7 fveq2d Could not format ( R e. Ring -> ( TopOpen ` S ) = ( TopOpen ` ( ( IDLsrg ` R ) |`s P ) ) ) : No typesetting found for |- ( R e. Ring -> ( TopOpen ` S ) = ( TopOpen ` ( ( IDLsrg ` R ) |`s P ) ) ) with typecode |-
9 eqid Could not format ( ( IDLsrg ` R ) |`s P ) = ( ( IDLsrg ` R ) |`s P ) : No typesetting found for |- ( ( IDLsrg ` R ) |`s P ) = ( ( IDLsrg ` R ) |`s P ) with typecode |-
10 eqid Could not format ( TopOpen ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) : No typesetting found for |- ( TopOpen ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) with typecode |-
11 9 10 resstopn Could not format ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) = ( TopOpen ` ( ( IDLsrg ` R ) |`s P ) ) : No typesetting found for |- ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) = ( TopOpen ` ( ( IDLsrg ` R ) |`s P ) ) with typecode |-
12 8 11 eqtr4di Could not format ( R e. Ring -> ( TopOpen ` S ) = ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) ) : No typesetting found for |- ( R e. Ring -> ( TopOpen ` S ) = ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) ) with typecode |-
13 eqid Could not format ( IDLsrg ` R ) = ( IDLsrg ` R ) : No typesetting found for |- ( IDLsrg ` R ) = ( IDLsrg ` R ) with typecode |-
14 eqid ran i I j I | ¬ i j = ran i I j I | ¬ i j
15 13 2 14 idlsrgtset Could not format ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopSet ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopSet ` ( IDLsrg ` R ) ) ) with typecode |-
16 2 fvexi I V
17 16 rabex j I | ¬ i j V
18 17 a1i R Ring i I j I | ¬ i j V
19 simp2 R Ring i I j I ¬ i j j I
20 13 2 idlsrgbas Could not format ( R e. Ring -> I = ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( R e. Ring -> I = ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
21 20 adantr Could not format ( ( R e. Ring /\ i e. I ) -> I = ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( ( R e. Ring /\ i e. I ) -> I = ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
22 21 3ad2ant1 Could not format ( ( ( R e. Ring /\ i e. I ) /\ j e. I /\ -. i C_ j ) -> I = ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( ( ( R e. Ring /\ i e. I ) /\ j e. I /\ -. i C_ j ) -> I = ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
23 19 22 eleqtrd Could not format ( ( ( R e. Ring /\ i e. I ) /\ j e. I /\ -. i C_ j ) -> j e. ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( ( ( R e. Ring /\ i e. I ) /\ j e. I /\ -. i C_ j ) -> j e. ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
24 23 rabssdv Could not format ( ( R e. Ring /\ i e. I ) -> { j e. I | -. i C_ j } C_ ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( ( R e. Ring /\ i e. I ) -> { j e. I | -. i C_ j } C_ ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
25 18 24 elpwd Could not format ( ( R e. Ring /\ i e. I ) -> { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( ( R e. Ring /\ i e. I ) -> { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
26 25 ralrimiva Could not format ( R e. Ring -> A. i e. I { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( R e. Ring -> A. i e. I { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
27 eqid i I j I | ¬ i j = i I j I | ¬ i j
28 27 rnmptss Could not format ( A. i e. I { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) -> ran ( i e. I |-> { j e. I | -. i C_ j } ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( A. i e. I { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) -> ran ( i e. I |-> { j e. I | -. i C_ j } ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
29 26 28 syl Could not format ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
30 15 29 eqsstrrd Could not format ( R e. Ring -> ( TopSet ` ( IDLsrg ` R ) ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( R e. Ring -> ( TopSet ` ( IDLsrg ` R ) ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) with typecode |-
31 eqid Could not format ( Base ` ( IDLsrg ` R ) ) = ( Base ` ( IDLsrg ` R ) ) : No typesetting found for |- ( Base ` ( IDLsrg ` R ) ) = ( Base ` ( IDLsrg ` R ) ) with typecode |-
32 eqid Could not format ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( IDLsrg ` R ) ) : No typesetting found for |- ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( IDLsrg ` R ) ) with typecode |-
33 31 32 topnid Could not format ( ( TopSet ` ( IDLsrg ` R ) ) C_ ~P ( Base ` ( IDLsrg ` R ) ) -> ( TopSet ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( ( TopSet ` ( IDLsrg ` R ) ) C_ ~P ( Base ` ( IDLsrg ` R ) ) -> ( TopSet ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) ) with typecode |-
34 30 33 syl Could not format ( R e. Ring -> ( TopSet ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( R e. Ring -> ( TopSet ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) ) with typecode |-
35 15 34 eqtrd Could not format ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopOpen ` ( IDLsrg ` R ) ) ) : No typesetting found for |- ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopOpen ` ( IDLsrg ` R ) ) ) with typecode |-
36 35 oveq1d Could not format ( R e. Ring -> ( ran ( i e. I |-> { j e. I | -. i C_ j } ) |`t P ) = ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) ) : No typesetting found for |- ( R e. Ring -> ( ran ( i e. I |-> { j e. I | -. i C_ j } ) |`t P ) = ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) ) with typecode |-
37 16 mptex i I j I | ¬ i j V
38 37 rnex ran i I j I | ¬ i j V
39 3 fvexi P V
40 elrest ran i I j I | ¬ i j V P V x ran i I j I | ¬ i j 𝑡 P y ran i I j I | ¬ i j x = y P
41 38 39 40 mp2an x ran i I j I | ¬ i j 𝑡 P y ran i I j I | ¬ i j x = y P
42 17 rgenw i I j I | ¬ i j V
43 ineq1 y = j I | ¬ i j y P = j I | ¬ i j P
44 43 eqeq2d y = j I | ¬ i j x = y P x = j I | ¬ i j P
45 27 44 rexrnmptw i I j I | ¬ i j V y ran i I j I | ¬ i j x = y P i I x = j I | ¬ i j P
46 42 45 ax-mp y ran i I j I | ¬ i j x = y P i I x = j I | ¬ i j P
47 inrab2 j I | ¬ i j P = j I P | ¬ i j
48 prmidlssidl Could not format ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) : No typesetting found for |- ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) with typecode |-
49 48 3 2 3sstr4g R Ring P I
50 sseqin2 P I I P = P
51 49 50 sylib R Ring I P = P
52 51 rabeqdv R Ring j I P | ¬ i j = j P | ¬ i j
53 47 52 eqtrid R Ring j I | ¬ i j P = j P | ¬ i j
54 53 eqeq2d R Ring x = j I | ¬ i j P x = j P | ¬ i j
55 54 rexbidv R Ring i I x = j I | ¬ i j P i I x = j P | ¬ i j
56 46 55 syl5bb R Ring y ran i I j I | ¬ i j x = y P i I x = j P | ¬ i j
57 41 56 syl5bb R Ring x ran i I j I | ¬ i j 𝑡 P i I x = j P | ¬ i j
58 4 eleq2i x J x ran i I j P | ¬ i j
59 eqid i I j P | ¬ i j = i I j P | ¬ i j
60 39 rabex j P | ¬ i j V
61 59 60 elrnmpti x ran i I j P | ¬ i j i I x = j P | ¬ i j
62 58 61 bitri x J i I x = j P | ¬ i j
63 57 62 bitr4di R Ring x ran i I j I | ¬ i j 𝑡 P x J
64 63 eqrdv R Ring ran i I j I | ¬ i j 𝑡 P = J
65 12 36 64 3eqtr2rd R Ring J = TopOpen S