Metamath Proof Explorer


Theorem satfvsucsuc

Description: The satisfaction predicate as function over wff codes of height ( N + 1 ) , expressed by the minimally necessary satisfaction predicates as function over wff codes of height N . (Contributed by AV, 21-Oct-2023)

Ref Expression
Hypotheses satfvsucsuc.s S=MSatE
satfvsucsuc.a A=Mω2ndu2ndv
satfvsucsuc.b B=aMω|zMizaωi2ndu
Assertion satfvsucsuc MVEWNωSsucsucN=SsucNxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A

Proof

Step Hyp Ref Expression
1 satfvsucsuc.s S=MSatE
2 satfvsucsuc.a A=Mω2ndu2ndv
3 satfvsucsuc.b B=aMω|zMizaωi2ndu
4 peano2 NωsucNω
5 1 satfvsuc MVEWsucNωSsucsucN=SsucNxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
6 4 5 syl3an3 MVEWNωSsucsucN=SsucNxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
7 orc sSsucNsSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
8 7 a1i MVEWNωsSsucNsSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
9 2 eqeq2i y=Ay=Mω2ndu2ndv
10 9 anbi2i x=1stu𝑔1stvy=Ax=1stu𝑔1stvy=Mω2ndu2ndv
11 10 rexbii vSsucNx=1stu𝑔1stvy=AvSsucNx=1stu𝑔1stvy=Mω2ndu2ndv
12 3 eqeq2i y=By=aMω|zMizaωi2ndu
13 12 anbi2i x=𝑔i1stuy=Bx=𝑔i1stuy=aMω|zMizaωi2ndu
14 13 rexbii iωx=𝑔i1stuy=Biωx=𝑔i1stuy=aMω|zMizaωi2ndu
15 11 14 orbi12i vSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
16 15 rexbii uSsucNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
17 16 bicomi uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSsucNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
18 3simpa MVEWNωMVEW
19 4 ancri NωsucNωNω
20 19 3ad2ant3 MVEWNωsucNωNω
21 18 20 jca MVEWNωMVEWsucNωNω
22 sssucid NsucN
23 22 a1i MVEWNωs=xyNsucN
24 1 satfsschain MVEWsucNωNωNsucNSNSsucN
25 24 imp MVEWsucNωNωNsucNSNSsucN
26 21 23 25 syl2an2r MVEWNωs=xySNSsucN
27 undif SNSsucNSNSsucNSN=SsucN
28 26 27 sylib MVEWNωs=xySNSsucNSN=SsucN
29 28 eqcomd MVEWNωs=xySsucN=SNSsucNSN
30 29 rexeqdv MVEWNωs=xyuSsucNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
31 rexun uSNSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
32 30 31 bitrdi MVEWNωs=xyuSsucNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
33 17 32 bitrid MVEWNωs=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
34 r19.43 uSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=B
35 22 a1i MVEWNωNsucN
36 21 35 jca MVEWNωMVEWsucNωNωNsucN
37 36 25 syl MVEWNωSNSsucN
38 37 adantr MVEWNωs=xySNSsucN
39 38 27 sylib MVEWNωs=xySNSsucNSN=SsucN
40 39 eqcomd MVEWNωs=xySsucN=SNSsucNSN
41 40 rexeqdv MVEWNωs=xyvSsucNx=1stu𝑔1stvy=AvSNSsucNSNx=1stu𝑔1stvy=A
42 rexun vSNSsucNSNx=1stu𝑔1stvy=AvSNx=1stu𝑔1stvy=AvSsucNSNx=1stu𝑔1stvy=A
43 41 42 bitrdi MVEWNωs=xyvSsucNx=1stu𝑔1stvy=AvSNx=1stu𝑔1stvy=AvSsucNSNx=1stu𝑔1stvy=A
44 43 rexbidv MVEWNωs=xyuSNvSsucNx=1stu𝑔1stvy=AuSNvSNx=1stu𝑔1stvy=AvSsucNSNx=1stu𝑔1stvy=A
45 44 orbi1d MVEWNωs=xyuSNvSsucNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=AvSsucNSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=B
46 r19.43 uSNvSNx=1stu𝑔1stvy=AvSsucNSNx=1stu𝑔1stvy=AuSNvSNx=1stu𝑔1stvy=AuSNvSsucNSNx=1stu𝑔1stvy=A
47 46 orbi1i uSNvSNx=1stu𝑔1stvy=AvSsucNSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=AuSNvSsucNSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=B
48 or32 uSNvSNx=1stu𝑔1stvy=AuSNvSsucNSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
49 r19.43 uSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=B
50 49 bicomi uSNvSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
51 50 orbi1i uSNvSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
52 48 51 bitri uSNvSNx=1stu𝑔1stvy=AuSNvSsucNSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
53 47 52 bitri uSNvSNx=1stu𝑔1stvy=AvSsucNSNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
54 45 53 bitrdi MVEWNωs=xyuSNvSsucNx=1stu𝑔1stvy=AuSNiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
55 34 54 bitrid MVEWNωs=xyuSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
56 animorr MVEWNωs=xyuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BxySNuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
57 1 satfvsuc MVEWNωSsucN=SNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
58 57 eleq2d MVEWNωsSsucNsSNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
59 58 adantr MVEWNωs=xysSsucNsSNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
60 eleq1 s=xysSNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxySNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
61 60 adantl MVEWNωs=xysSNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxySNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
62 elun xySNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxySNxyxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
63 opabidw xyxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
64 63 orbi2i xySNxyxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxySNuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
65 62 64 bitri xySNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxySNuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
66 61 65 bitrdi MVEWNωs=xysSNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxySNuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
67 59 66 bitrd MVEWNωs=xysSsucNxySNuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
68 2 eqcomi Mω2ndu2ndv=A
69 68 eqeq2i y=Mω2ndu2ndvy=A
70 69 anbi2i x=1stu𝑔1stvy=Mω2ndu2ndvx=1stu𝑔1stvy=A
71 70 rexbii vSNx=1stu𝑔1stvy=Mω2ndu2ndvvSNx=1stu𝑔1stvy=A
72 3 eqcomi aMω|zMizaωi2ndu=B
73 72 eqeq2i y=aMω|zMizaωi2nduy=B
74 73 anbi2i x=𝑔i1stuy=aMω|zMizaωi2ndux=𝑔i1stuy=B
75 74 rexbii iωx=𝑔i1stuy=aMω|zMizaωi2nduiωx=𝑔i1stuy=B
76 71 75 orbi12i vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
77 76 rexbii uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
78 77 a1i MVEWNωs=xyuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
79 78 orbi2d MVEWNωs=xyxySNuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxySNuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
80 67 79 bitrd MVEWNωs=xysSsucNxySNuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
81 80 adantr MVEWNωs=xyuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucNxySNuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
82 56 81 mpbird MVEWNωs=xyuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucN
83 82 orcd MVEWNωs=xyuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
84 83 ex MVEWNωs=xyuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
85 simplr MVEWNωs=xyuSNvSsucNSNx=1stu𝑔1stvy=As=xy
86 animorr MVEWNωs=xyuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
87 85 86 jca MVEWNωs=xyuSNvSsucNSNx=1stu𝑔1stvy=As=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
88 87 olcd MVEWNωs=xyuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
89 88 ex MVEWNωs=xyuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
90 84 89 jaod MVEWNωs=xyuSNvSNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
91 55 90 sylbid MVEWNωs=xyuSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
92 simplr MVEWNωs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=Bs=xy
93 orc uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
94 93 adantl MVEWNωs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
95 92 94 jca MVEWNωs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=Bs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
96 95 olcd MVEWNωs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
97 96 ex MVEWNωs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
98 91 97 jaod MVEWNωs=xyuSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
99 33 98 sylbid MVEWNωs=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
100 99 expimpd MVEWNωs=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
101 100 2eximdv MVEWNωxys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxysSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
102 19.45v ysSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
103 102 exbii xysSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AxsSsucNys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
104 19.45v xsSsucNys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
105 103 104 bitri xysSsucNs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
106 101 105 imbitrdi MVEWNωxys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
107 8 106 jaod MVEWNωsSsucNxys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
108 difss SsucNSNSsucN
109 ssrexv SsucNSNSsucNuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
110 108 109 ax-mp uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
111 110 a1i MVEWNωuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=B
112 111 16 imbitrdi MVEWNωuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
113 ssrexv SNSsucNuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNSNx=1stu𝑔1stvy=A
114 37 113 syl MVEWNωuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNSNx=1stu𝑔1stvy=A
115 10 2rexbii uSsucNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNSNx=1stu𝑔1stvy=Mω2ndu2ndv
116 114 115 imbitrdi MVEWNωuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNSNx=1stu𝑔1stvy=Mω2ndu2ndv
117 116 imp MVEWNωuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNSNx=1stu𝑔1stvy=Mω2ndu2ndv
118 ssrexv SsucNSNSsucNvSsucNSNx=1stu𝑔1stvy=Mω2ndu2ndvvSsucNx=1stu𝑔1stvy=Mω2ndu2ndv
119 108 118 ax-mp vSsucNSNx=1stu𝑔1stvy=Mω2ndu2ndvvSsucNx=1stu𝑔1stvy=Mω2ndu2ndv
120 119 reximi uSsucNvSsucNSNx=1stu𝑔1stvy=Mω2ndu2ndvuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndv
121 117 120 syl MVEWNωuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndv
122 121 orcd MVEWNωuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndvuSsucNiωx=𝑔i1stuy=aMω|zMizaωi2ndu
123 122 ex MVEWNωuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndvuSsucNiωx=𝑔i1stuy=aMω|zMizaωi2ndu
124 r19.43 uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndvuSsucNiωx=𝑔i1stuy=aMω|zMizaωi2ndu
125 123 124 syl6ibr MVEWNωuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
126 112 125 jaod MVEWNωuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
127 126 anim2d MVEWNωs=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=As=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
128 127 2eximdv MVEWNωxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=Axys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
129 128 orim2d MVEWNωsSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNxys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
130 107 129 impbid MVEWNωsSsucNxys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
131 elun sSsucNxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNsxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
132 elopab sxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
133 132 orbi2i sSsucNsxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNxys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
134 131 133 bitri sSsucNxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNxys=xyuSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
135 elun sSsucNxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNsxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
136 elopab sxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=Axys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
137 136 orbi2i sSsucNsxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
138 135 137 bitri sSsucNxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNxys=xyuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
139 130 134 138 3bitr4g MVEWNωsSsucNxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndusSsucNxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
140 139 eqrdv MVEWNωSsucNxy|uSsucNvSsucNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu=SsucNxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
141 6 140 eqtrd MVEWNωSsucsucN=SsucNxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A