Metamath Proof Explorer


Theorem sbgoldbwt

Description: If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion sbgoldbwt nEven4<nnGoldbachEvenmOdd5<mmGoldbachOddW

Proof

Step Hyp Ref Expression
1 oddz mOddm
2 5nn 5
3 2 nnzi 5
4 zltp1le 5m5<m5+1m
5 3 4 mpan m5<m5+1m
6 5p1e6 5+1=6
7 6 breq1i 5+1m6m
8 6re 6
9 8 a1i m6
10 zre mm
11 9 10 leloed m6m6<m6=m
12 7 11 bitrid m5+1m6<m6=m
13 6nn 6
14 13 nnzi 6
15 zltp1le 6m6<m6+1m
16 14 15 mpan m6<m6+1m
17 6p1e7 6+1=7
18 17 breq1i 6+1m7m
19 7re 7
20 19 a1i m7
21 20 10 leloed m7m7<m7=m
22 18 21 bitrid m6+1m7<m7=m
23 simpr 7<mmmOddmOdd
24 3odd 3Odd
25 23 24 jctir 7<mmmOddmOdd3Odd
26 omoeALTV mOdd3Oddm3Even
27 breq2 n=m34<n4<m3
28 eleq1 n=m3nGoldbachEvenm3GoldbachEven
29 27 28 imbi12d n=m34<nnGoldbachEven4<m3m3GoldbachEven
30 29 rspcv m3EvennEven4<nnGoldbachEven4<m3m3GoldbachEven
31 25 26 30 3syl 7<mmmOddnEven4<nnGoldbachEven4<m3m3GoldbachEven
32 4p3e7 4+3=7
33 32 eqcomi 7=4+3
34 33 breq1i 7<m4+3<m
35 4re 4
36 35 a1i m4
37 3re 3
38 37 a1i m3
39 ltaddsub 43m4+3<m4<m3
40 39 biimpd 43m4+3<m4<m3
41 36 38 10 40 syl3anc m4+3<m4<m3
42 34 41 biimtrid m7<m4<m3
43 42 impcom 7<mm4<m3
44 43 adantr 7<mmmOdd4<m3
45 pm2.27 4<m34<m3m3GoldbachEvenm3GoldbachEven
46 44 45 syl 7<mmmOdd4<m3m3GoldbachEvenm3GoldbachEven
47 isgbe m3GoldbachEvenm3EvenpqpOddqOddm3=p+q
48 3prm 3
49 48 a1i m3
50 zcn mm
51 3cn 3
52 50 51 jctir mm3
53 npcan m3m-3+3=m
54 53 eqcomd m3m=m-3+3
55 52 54 syl mm=m-3+3
56 oveq2 3=rm-3+3=m-3+r
57 56 eqcoms r=3m-3+3=m-3+r
58 55 57 sylan9eq mr=3m=m-3+r
59 49 58 rspcedeq2vd mrm=m-3+r
60 oveq1 m3=p+qm-3+r=p+q+r
61 60 eqeq2d m3=p+qm=m-3+rm=p+q+r
62 61 rexbidv m3=p+qrm=m-3+rrm=p+q+r
63 59 62 imbitrid m3=p+qmrm=p+q+r
64 63 3ad2ant3 pOddqOddm3=p+qmrm=p+q+r
65 64 com12 mpOddqOddm3=p+qrm=p+q+r
66 65 ad4antlr 7<mmmOddpqpOddqOddm3=p+qrm=p+q+r
67 66 reximdva 7<mmmOddpqpOddqOddm3=p+qqrm=p+q+r
68 67 reximdva 7<mmmOddpqpOddqOddm3=p+qpqrm=p+q+r
69 68 23 jctild 7<mmmOddpqpOddqOddm3=p+qmOddpqrm=p+q+r
70 isgbow mGoldbachOddWmOddpqrm=p+q+r
71 69 70 syl6ibr 7<mmmOddpqpOddqOddm3=p+qmGoldbachOddW
72 71 adantld 7<mmmOddm3EvenpqpOddqOddm3=p+qmGoldbachOddW
73 47 72 biimtrid 7<mmmOddm3GoldbachEvenmGoldbachOddW
74 31 46 73 3syld 7<mmmOddnEven4<nnGoldbachEvenmGoldbachOddW
75 74 ex 7<mmmOddnEven4<nnGoldbachEvenmGoldbachOddW
76 75 com23 7<mmnEven4<nnGoldbachEvenmOddmGoldbachOddW
77 76 ex 7<mmnEven4<nnGoldbachEvenmOddmGoldbachOddW
78 7gbow 7GoldbachOddW
79 eleq1 7=m7GoldbachOddWmGoldbachOddW
80 78 79 mpbii 7=mmGoldbachOddW
81 80 a1d 7=mmOddmGoldbachOddW
82 81 a1d 7=mnEven4<nnGoldbachEvenmOddmGoldbachOddW
83 82 a1d 7=mmnEven4<nnGoldbachEvenmOddmGoldbachOddW
84 77 83 jaoi 7<m7=mmnEven4<nnGoldbachEvenmOddmGoldbachOddW
85 84 com12 m7<m7=mnEven4<nnGoldbachEvenmOddmGoldbachOddW
86 22 85 sylbid m6+1mnEven4<nnGoldbachEvenmOddmGoldbachOddW
87 16 86 sylbid m6<mnEven4<nnGoldbachEvenmOddmGoldbachOddW
88 87 com12 6<mmnEven4<nnGoldbachEvenmOddmGoldbachOddW
89 eleq1 6=m6OddmOdd
90 6even 6Even
91 evennodd 6Even¬6Odd
92 91 pm2.21d 6Even6OddmGoldbachOddW
93 90 92 ax-mp 6OddmGoldbachOddW
94 89 93 syl6bir 6=mmOddmGoldbachOddW
95 94 a1d 6=mnEven4<nnGoldbachEvenmOddmGoldbachOddW
96 95 a1d 6=mmnEven4<nnGoldbachEvenmOddmGoldbachOddW
97 88 96 jaoi 6<m6=mmnEven4<nnGoldbachEvenmOddmGoldbachOddW
98 97 com12 m6<m6=mnEven4<nnGoldbachEvenmOddmGoldbachOddW
99 12 98 sylbid m5+1mnEven4<nnGoldbachEvenmOddmGoldbachOddW
100 5 99 sylbid m5<mnEven4<nnGoldbachEvenmOddmGoldbachOddW
101 100 com24 mmOddnEven4<nnGoldbachEven5<mmGoldbachOddW
102 1 101 mpcom mOddnEven4<nnGoldbachEven5<mmGoldbachOddW
103 102 impcom nEven4<nnGoldbachEvenmOdd5<mmGoldbachOddW
104 103 ralrimiva nEven4<nnGoldbachEvenmOdd5<mmGoldbachOddW