Metamath Proof Explorer


Theorem scmatscmiddistr

Description: Distributive law for scalar and ring multiplication for scalar matrices expressed as multiplications of a scalar with the identity matrix. (Contributed by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatscmide.a A=NMatR
scmatscmide.b B=BaseR
scmatscmide.0 0˙=0R
scmatscmide.1 1˙=1A
scmatscmide.m ˙=A
scmatscmiddistr.t ·˙=R
scmatscmiddistr.m ×˙=A
Assertion scmatscmiddistr NFinRRingSBTBS˙1˙×˙T˙1˙=S·˙T˙1˙

Proof

Step Hyp Ref Expression
1 scmatscmide.a A=NMatR
2 scmatscmide.b B=BaseR
3 scmatscmide.0 0˙=0R
4 scmatscmide.1 1˙=1A
5 scmatscmide.m ˙=A
6 scmatscmiddistr.t ·˙=R
7 scmatscmiddistr.m ×˙=A
8 simprl NFinRRingSBTBSB
9 eqid BaseA=BaseA
10 eqid NDMatR=NDMatR
11 1 9 3 10 dmatid NFinRRing1ANDMatR
12 4 11 eqeltrid NFinRRing1˙NDMatR
13 12 adantr NFinRRingSBTB1˙NDMatR
14 8 13 jca NFinRRingSBTBSB1˙NDMatR
15 2 1 9 5 10 dmatscmcl NFinRRingSB1˙NDMatRS˙1˙NDMatR
16 14 15 syldan NFinRRingSBTBS˙1˙NDMatR
17 simprr NFinRRingSBTBTB
18 17 13 jca NFinRRingSBTBTB1˙NDMatR
19 2 1 9 5 10 dmatscmcl NFinRRingTB1˙NDMatRT˙1˙NDMatR
20 18 19 syldan NFinRRingSBTBT˙1˙NDMatR
21 16 20 jca NFinRRingSBTBS˙1˙NDMatRT˙1˙NDMatR
22 7 oveqi S˙1˙×˙T˙1˙=S˙1˙AT˙1˙
23 1 9 3 10 dmatmul NFinRRingS˙1˙NDMatRT˙1˙NDMatRS˙1˙AT˙1˙=iN,jNifi=jiS˙1˙jRiT˙1˙j0˙
24 22 23 eqtrid NFinRRingS˙1˙NDMatRT˙1˙NDMatRS˙1˙×˙T˙1˙=iN,jNifi=jiS˙1˙jRiT˙1˙j0˙
25 21 24 syldan NFinRRingSBTBS˙1˙×˙T˙1˙=iN,jNifi=jiS˙1˙jRiT˙1˙j0˙
26 simpll NFinRRingSBTBNFin
27 simplr NFinRRingSBTBRRing
28 26 27 8 3jca NFinRRingSBTBNFinRRingSB
29 28 3ad2ant1 NFinRRingSBTBiNjNNFinRRingSB
30 3simpc NFinRRingSBTBiNjNiNjN
31 1 2 3 4 5 scmatscmide NFinRRingSBiNjNiS˙1˙j=ifi=jS0˙
32 29 30 31 syl2anc NFinRRingSBTBiNjNiS˙1˙j=ifi=jS0˙
33 26 27 17 3jca NFinRRingSBTBNFinRRingTB
34 33 3ad2ant1 NFinRRingSBTBiNjNNFinRRingTB
35 1 2 3 4 5 scmatscmide NFinRRingTBiNjNiT˙1˙j=ifi=jT0˙
36 34 30 35 syl2anc NFinRRingSBTBiNjNiT˙1˙j=ifi=jT0˙
37 32 36 oveq12d NFinRRingSBTBiNjNiS˙1˙jRiT˙1˙j=ifi=jS0˙Rifi=jT0˙
38 37 ifeq1d NFinRRingSBTBiNjNifi=jiS˙1˙jRiT˙1˙j0˙=ifi=jifi=jS0˙Rifi=jT0˙0˙
39 38 mpoeq3dva NFinRRingSBTBiN,jNifi=jiS˙1˙jRiT˙1˙j0˙=iN,jNifi=jifi=jS0˙Rifi=jT0˙0˙
40 iftrue i=jifi=jS0˙=S
41 iftrue i=jifi=jT0˙=T
42 40 41 oveq12d i=jifi=jS0˙Rifi=jT0˙=SRT
43 42 adantl NFinRRingSBTBiNjNi=jifi=jS0˙Rifi=jT0˙=SRT
44 43 ifeq1da NFinRRingSBTBiNjNifi=jifi=jS0˙Rifi=jT0˙0˙=ifi=jSRT0˙
45 44 mpoeq3dva NFinRRingSBTBiN,jNifi=jifi=jS0˙Rifi=jT0˙0˙=iN,jNifi=jSRT0˙
46 eqidd NFinRRingSBTBxNyNiN,jNifi=jSRT0˙=iN,jNifi=jSRT0˙
47 eqeq12 i=xj=yi=jx=y
48 6 eqcomi R=·˙
49 48 oveqi SRT=S·˙T
50 49 a1i i=xj=ySRT=S·˙T
51 47 50 ifbieq1d i=xj=yifi=jSRT0˙=ifx=yS·˙T0˙
52 51 adantl NFinRRingSBTBxNyNi=xj=yifi=jSRT0˙=ifx=yS·˙T0˙
53 simprl NFinRRingSBTBxNyNxN
54 simprr NFinRRingSBTBxNyNyN
55 ovex S·˙TV
56 3 fvexi 0˙V
57 55 56 ifex ifx=yS·˙T0˙V
58 57 a1i NFinRRingSBTBxNyNifx=yS·˙T0˙V
59 46 52 53 54 58 ovmpod NFinRRingSBTBxNyNxiN,jNifi=jSRT0˙y=ifx=yS·˙T0˙
60 27 8 17 3jca NFinRRingSBTBRRingSBTB
61 2 6 ringcl RRingSBTBS·˙TB
62 60 61 syl NFinRRingSBTBS·˙TB
63 26 27 62 3jca NFinRRingSBTBNFinRRingS·˙TB
64 1 2 3 4 5 scmatscmide NFinRRingS·˙TBxNyNxS·˙T˙1˙y=ifx=yS·˙T0˙
65 63 64 sylan NFinRRingSBTBxNyNxS·˙T˙1˙y=ifx=yS·˙T0˙
66 59 65 eqtr4d NFinRRingSBTBxNyNxiN,jNifi=jSRT0˙y=xS·˙T˙1˙y
67 66 ralrimivva NFinRRingSBTBxNyNxiN,jNifi=jSRT0˙y=xS·˙T˙1˙y
68 eqid R=R
69 2 68 ringcl RRingSBTBSRTB
70 60 69 syl NFinRRingSBTBSRTB
71 2 3 ring0cl RRing0˙B
72 71 adantl NFinRRing0˙B
73 72 adantr NFinRRingSBTB0˙B
74 70 73 ifcld NFinRRingSBTBifi=jSRT0˙B
75 74 3ad2ant1 NFinRRingSBTBiNjNifi=jSRT0˙B
76 1 2 9 26 27 75 matbas2d NFinRRingSBTBiN,jNifi=jSRT0˙BaseA
77 1 matring NFinRRingARing
78 9 4 ringidcl ARing1˙BaseA
79 77 78 syl NFinRRing1˙BaseA
80 79 adantr NFinRRingSBTB1˙BaseA
81 62 80 jca NFinRRingSBTBS·˙TB1˙BaseA
82 2 1 9 5 matvscl NFinRRingS·˙TB1˙BaseAS·˙T˙1˙BaseA
83 81 82 syldan NFinRRingSBTBS·˙T˙1˙BaseA
84 1 9 eqmat iN,jNifi=jSRT0˙BaseAS·˙T˙1˙BaseAiN,jNifi=jSRT0˙=S·˙T˙1˙xNyNxiN,jNifi=jSRT0˙y=xS·˙T˙1˙y
85 76 83 84 syl2anc NFinRRingSBTBiN,jNifi=jSRT0˙=S·˙T˙1˙xNyNxiN,jNifi=jSRT0˙y=xS·˙T˙1˙y
86 67 85 mpbird NFinRRingSBTBiN,jNifi=jSRT0˙=S·˙T˙1˙
87 45 86 eqtrd NFinRRingSBTBiN,jNifi=jifi=jS0˙Rifi=jT0˙0˙=S·˙T˙1˙
88 39 87 eqtrd NFinRRingSBTBiN,jNifi=jiS˙1˙jRiT˙1˙j0˙=S·˙T˙1˙
89 25 88 eqtrd NFinRRingSBTBS˙1˙×˙T˙1˙=S·˙T˙1˙