| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatscmide.a |  | 
						
							| 2 |  | scmatscmide.b |  | 
						
							| 3 |  | scmatscmide.0 |  | 
						
							| 4 |  | scmatscmide.1 |  | 
						
							| 5 |  | scmatscmide.m |  | 
						
							| 6 |  | scmatscmiddistr.t |  | 
						
							| 7 |  | scmatscmiddistr.m |  | 
						
							| 8 |  | simprl |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 9 3 10 | dmatid |  | 
						
							| 12 | 4 11 | eqeltrid |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 8 13 | jca |  | 
						
							| 15 | 2 1 9 5 10 | dmatscmcl |  | 
						
							| 16 | 14 15 | syldan |  | 
						
							| 17 |  | simprr |  | 
						
							| 18 | 17 13 | jca |  | 
						
							| 19 | 2 1 9 5 10 | dmatscmcl |  | 
						
							| 20 | 18 19 | syldan |  | 
						
							| 21 | 16 20 | jca |  | 
						
							| 22 | 7 | oveqi |  | 
						
							| 23 | 1 9 3 10 | dmatmul |  | 
						
							| 24 | 22 23 | eqtrid |  | 
						
							| 25 | 21 24 | syldan |  | 
						
							| 26 |  | simpll |  | 
						
							| 27 |  | simplr |  | 
						
							| 28 | 26 27 8 | 3jca |  | 
						
							| 29 | 28 | 3ad2ant1 |  | 
						
							| 30 |  | 3simpc |  | 
						
							| 31 | 1 2 3 4 5 | scmatscmide |  | 
						
							| 32 | 29 30 31 | syl2anc |  | 
						
							| 33 | 26 27 17 | 3jca |  | 
						
							| 34 | 33 | 3ad2ant1 |  | 
						
							| 35 | 1 2 3 4 5 | scmatscmide |  | 
						
							| 36 | 34 30 35 | syl2anc |  | 
						
							| 37 | 32 36 | oveq12d |  | 
						
							| 38 | 37 | ifeq1d |  | 
						
							| 39 | 38 | mpoeq3dva |  | 
						
							| 40 |  | iftrue |  | 
						
							| 41 |  | iftrue |  | 
						
							| 42 | 40 41 | oveq12d |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 | 43 | ifeq1da |  | 
						
							| 45 | 44 | mpoeq3dva |  | 
						
							| 46 |  | eqidd |  | 
						
							| 47 |  | eqeq12 |  | 
						
							| 48 | 6 | eqcomi |  | 
						
							| 49 | 48 | oveqi |  | 
						
							| 50 | 49 | a1i |  | 
						
							| 51 | 47 50 | ifbieq1d |  | 
						
							| 52 | 51 | adantl |  | 
						
							| 53 |  | simprl |  | 
						
							| 54 |  | simprr |  | 
						
							| 55 |  | ovex |  | 
						
							| 56 | 3 | fvexi |  | 
						
							| 57 | 55 56 | ifex |  | 
						
							| 58 | 57 | a1i |  | 
						
							| 59 | 46 52 53 54 58 | ovmpod |  | 
						
							| 60 | 27 8 17 | 3jca |  | 
						
							| 61 | 2 6 | ringcl |  | 
						
							| 62 | 60 61 | syl |  | 
						
							| 63 | 26 27 62 | 3jca |  | 
						
							| 64 | 1 2 3 4 5 | scmatscmide |  | 
						
							| 65 | 63 64 | sylan |  | 
						
							| 66 | 59 65 | eqtr4d |  | 
						
							| 67 | 66 | ralrimivva |  | 
						
							| 68 |  | eqid |  | 
						
							| 69 | 2 68 | ringcl |  | 
						
							| 70 | 60 69 | syl |  | 
						
							| 71 | 2 3 | ring0cl |  | 
						
							| 72 | 71 | adantl |  | 
						
							| 73 | 72 | adantr |  | 
						
							| 74 | 70 73 | ifcld |  | 
						
							| 75 | 74 | 3ad2ant1 |  | 
						
							| 76 | 1 2 9 26 27 75 | matbas2d |  | 
						
							| 77 | 1 | matring |  | 
						
							| 78 | 9 4 | ringidcl |  | 
						
							| 79 | 77 78 | syl |  | 
						
							| 80 | 79 | adantr |  | 
						
							| 81 | 62 80 | jca |  | 
						
							| 82 | 2 1 9 5 | matvscl |  | 
						
							| 83 | 81 82 | syldan |  | 
						
							| 84 | 1 9 | eqmat |  | 
						
							| 85 | 76 83 84 | syl2anc |  | 
						
							| 86 | 67 85 | mpbird |  | 
						
							| 87 | 45 86 | eqtrd |  | 
						
							| 88 | 39 87 | eqtrd |  | 
						
							| 89 | 25 88 | eqtrd |  |