Description: Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0reuzb.k | |
|
sge0reuzb.p | |
||
sge0reuzb.m | |
||
sge0reuzb.z | |
||
sge0reuzb.b | |
||
sge0reuzb.x | |
||
Assertion | sge0reuzb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0reuzb.k | |
|
2 | sge0reuzb.p | |
|
3 | sge0reuzb.m | |
|
4 | sge0reuzb.z | |
|
5 | sge0reuzb.b | |
|
6 | sge0reuzb.x | |
|
7 | 1 3 4 5 | sge0reuz | |
8 | nfv | |
|
9 | eqid | |
|
10 | nfv | |
|
11 | 1 10 | nfan | |
12 | fzfid | |
|
13 | elfzuz | |
|
14 | 13 4 | eleqtrrdi | |
15 | 14 | adantl | |
16 | rge0ssre | |
|
17 | 16 5 | sselid | |
18 | 15 17 | syldan | |
19 | 18 | adantlr | |
20 | 11 12 19 | fsumreclf | |
21 | 8 9 20 | rnmptssd | |
22 | uzid | |
|
23 | 3 22 | syl | |
24 | 23 4 | eleqtrrdi | |
25 | eqidd | |
|
26 | oveq2 | |
|
27 | 26 | sumeq1d | |
28 | 27 | rspceeqv | |
29 | 24 25 28 | syl2anc | |
30 | sumex | |
|
31 | 30 | a1i | |
32 | 9 29 31 | elrnmptd | |
33 | 32 | ne0d | |
34 | vex | |
|
35 | 9 | elrnmpt | |
36 | 34 35 | ax-mp | |
37 | 36 | biimpi | |
38 | 37 | adantl | |
39 | nfv | |
|
40 | nfra1 | |
|
41 | 39 40 | nfan | |
42 | nfv | |
|
43 | rspa | |
|
44 | simpr | |
|
45 | simpl | |
|
46 | 44 45 | eqbrtrd | |
47 | 46 | ex | |
48 | 43 47 | syl | |
49 | 48 | ex | |
50 | 49 | adantl | |
51 | 41 42 50 | rexlimd | |
52 | 51 | adantr | |
53 | 38 52 | mpd | |
54 | 53 | ralrimiva | |
55 | 54 | ex | |
56 | 55 | ex | |
57 | 2 56 | reximdai | |
58 | 6 57 | mpd | |
59 | supxrre | |
|
60 | 21 33 58 59 | syl3anc | |
61 | 7 60 | eqtrd | |