| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0reuzb.k |
|
| 2 |
|
sge0reuzb.p |
|
| 3 |
|
sge0reuzb.m |
|
| 4 |
|
sge0reuzb.z |
|
| 5 |
|
sge0reuzb.b |
|
| 6 |
|
sge0reuzb.x |
|
| 7 |
1 3 4 5
|
sge0reuz |
|
| 8 |
|
nfv |
|
| 9 |
|
eqid |
|
| 10 |
|
nfv |
|
| 11 |
1 10
|
nfan |
|
| 12 |
|
fzfid |
|
| 13 |
|
elfzuz |
|
| 14 |
13 4
|
eleqtrrdi |
|
| 15 |
14
|
adantl |
|
| 16 |
|
rge0ssre |
|
| 17 |
16 5
|
sselid |
|
| 18 |
15 17
|
syldan |
|
| 19 |
18
|
adantlr |
|
| 20 |
11 12 19
|
fsumreclf |
|
| 21 |
8 9 20
|
rnmptssd |
|
| 22 |
|
uzid |
|
| 23 |
3 22
|
syl |
|
| 24 |
23 4
|
eleqtrrdi |
|
| 25 |
|
eqidd |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
sumeq1d |
|
| 28 |
27
|
rspceeqv |
|
| 29 |
24 25 28
|
syl2anc |
|
| 30 |
|
sumex |
|
| 31 |
30
|
a1i |
|
| 32 |
9 29 31
|
elrnmptd |
|
| 33 |
32
|
ne0d |
|
| 34 |
|
vex |
|
| 35 |
9
|
elrnmpt |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
36
|
biimpi |
|
| 38 |
37
|
adantl |
|
| 39 |
|
nfv |
|
| 40 |
|
nfra1 |
|
| 41 |
39 40
|
nfan |
|
| 42 |
|
nfv |
|
| 43 |
|
rspa |
|
| 44 |
|
simpr |
|
| 45 |
|
simpl |
|
| 46 |
44 45
|
eqbrtrd |
|
| 47 |
46
|
ex |
|
| 48 |
43 47
|
syl |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
adantl |
|
| 51 |
41 42 50
|
rexlimd |
|
| 52 |
51
|
adantr |
|
| 53 |
38 52
|
mpd |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
ex |
|
| 57 |
2 56
|
reximdai |
|
| 58 |
6 57
|
mpd |
|
| 59 |
|
supxrre |
|
| 60 |
21 33 58 59
|
syl3anc |
|
| 61 |
7 60
|
eqtrd |
|