Step |
Hyp |
Ref |
Expression |
1 |
|
sge0uzfsumgt.p |
|
2 |
|
sge0uzfsumgt.h |
|
3 |
|
sge0uzfsumgt.z |
|
4 |
|
sge0uzfsumgt.b |
|
5 |
|
sge0uzfsumgt.c |
|
6 |
|
sge0uzfsumgt.l |
|
7 |
3
|
fvexi |
|
8 |
7
|
a1i |
|
9 |
1 8 4 5 6
|
sge0gtfsumgt |
|
10 |
2
|
3ad2ant1 |
|
11 |
|
elpwinss |
|
12 |
11
|
3ad2ant2 |
|
13 |
|
elinel2 |
|
14 |
13
|
3ad2ant2 |
|
15 |
10 3 12 14
|
uzfissfz |
|
16 |
5
|
ad2antrr |
|
17 |
|
nfv |
|
18 |
1 17
|
nfan |
|
19 |
|
fzfid |
|
20 |
|
simpr |
|
21 |
19 20
|
ssfid |
|
22 |
|
simpll |
|
23 |
20
|
sselda |
|
24 |
|
rge0ssre |
|
25 |
|
fzssuz |
|
26 |
25 3
|
sseqtrri |
|
27 |
|
id |
|
28 |
26 27
|
sselid |
|
29 |
28 4
|
sylan2 |
|
30 |
24 29
|
sselid |
|
31 |
22 23 30
|
syl2anc |
|
32 |
18 21 31
|
fsumreclf |
|
33 |
32
|
adantlr |
|
34 |
|
fzfid |
|
35 |
1 34 30
|
fsumreclf |
|
36 |
35
|
ad2antrr |
|
37 |
|
simplr |
|
38 |
30
|
adantlr |
|
39 |
|
0xr |
|
40 |
39
|
a1i |
|
41 |
|
pnfxr |
|
42 |
41
|
a1i |
|
43 |
|
icogelb |
|
44 |
40 42 29 43
|
syl3anc |
|
45 |
44
|
adantlr |
|
46 |
18 19 38 45 20
|
fsumlessf |
|
47 |
46
|
adantlr |
|
48 |
16 33 36 37 47
|
ltletrd |
|
49 |
48
|
ex |
|
50 |
49
|
adantr |
|
51 |
50
|
3adantl2 |
|
52 |
51
|
reximdva |
|
53 |
15 52
|
mpd |
|
54 |
53
|
3exp |
|
55 |
54
|
rexlimdv |
|
56 |
9 55
|
mpd |
|