Metamath Proof Explorer


Theorem sge0uzfsumgt

Description: If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0uzfsumgt.p kφ
sge0uzfsumgt.h φK
sge0uzfsumgt.z Z=K
sge0uzfsumgt.b φkZB0+∞
sge0uzfsumgt.c φC
sge0uzfsumgt.l φC<sum^kZB
Assertion sge0uzfsumgt φmZC<k=KmB

Proof

Step Hyp Ref Expression
1 sge0uzfsumgt.p kφ
2 sge0uzfsumgt.h φK
3 sge0uzfsumgt.z Z=K
4 sge0uzfsumgt.b φkZB0+∞
5 sge0uzfsumgt.c φC
6 sge0uzfsumgt.l φC<sum^kZB
7 3 fvexi ZV
8 7 a1i φZV
9 1 8 4 5 6 sge0gtfsumgt φx𝒫ZFinC<kxB
10 2 3ad2ant1 φx𝒫ZFinC<kxBK
11 elpwinss x𝒫ZFinxZ
12 11 3ad2ant2 φx𝒫ZFinC<kxBxZ
13 elinel2 x𝒫ZFinxFin
14 13 3ad2ant2 φx𝒫ZFinC<kxBxFin
15 10 3 12 14 uzfissfz φx𝒫ZFinC<kxBmZxKm
16 5 ad2antrr φC<kxBxKmC
17 nfv kxKm
18 1 17 nfan kφxKm
19 fzfid φxKmKmFin
20 simpr φxKmxKm
21 19 20 ssfid φxKmxFin
22 simpll φxKmkxφ
23 20 sselda φxKmkxkKm
24 rge0ssre 0+∞
25 fzssuz KmK
26 25 3 sseqtrri KmZ
27 id kKmkKm
28 26 27 sselid kKmkZ
29 28 4 sylan2 φkKmB0+∞
30 24 29 sselid φkKmB
31 22 23 30 syl2anc φxKmkxB
32 18 21 31 fsumreclf φxKmkxB
33 32 adantlr φC<kxBxKmkxB
34 fzfid φKmFin
35 1 34 30 fsumreclf φk=KmB
36 35 ad2antrr φC<kxBxKmk=KmB
37 simplr φC<kxBxKmC<kxB
38 30 adantlr φxKmkKmB
39 0xr 0*
40 39 a1i φkKm0*
41 pnfxr +∞*
42 41 a1i φkKm+∞*
43 icogelb 0*+∞*B0+∞0B
44 40 42 29 43 syl3anc φkKm0B
45 44 adantlr φxKmkKm0B
46 18 19 38 45 20 fsumlessf φxKmkxBk=KmB
47 46 adantlr φC<kxBxKmkxBk=KmB
48 16 33 36 37 47 ltletrd φC<kxBxKmC<k=KmB
49 48 ex φC<kxBxKmC<k=KmB
50 49 adantr φC<kxBmZxKmC<k=KmB
51 50 3adantl2 φx𝒫ZFinC<kxBmZxKmC<k=KmB
52 51 reximdva φx𝒫ZFinC<kxBmZxKmmZC<k=KmB
53 15 52 mpd φx𝒫ZFinC<kxBmZC<k=KmB
54 53 3exp φx𝒫ZFinC<kxBmZC<k=KmB
55 54 rexlimdv φx𝒫ZFinC<kxBmZC<k=KmB
56 9 55 mpd φmZC<k=KmB