Description: If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0uzfsumgt.p | |
|
sge0uzfsumgt.h | |
||
sge0uzfsumgt.z | |
||
sge0uzfsumgt.b | |
||
sge0uzfsumgt.c | |
||
sge0uzfsumgt.l | |
||
Assertion | sge0uzfsumgt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0uzfsumgt.p | |
|
2 | sge0uzfsumgt.h | |
|
3 | sge0uzfsumgt.z | |
|
4 | sge0uzfsumgt.b | |
|
5 | sge0uzfsumgt.c | |
|
6 | sge0uzfsumgt.l | |
|
7 | 3 | fvexi | |
8 | 7 | a1i | |
9 | 1 8 4 5 6 | sge0gtfsumgt | |
10 | 2 | 3ad2ant1 | |
11 | elpwinss | |
|
12 | 11 | 3ad2ant2 | |
13 | elinel2 | |
|
14 | 13 | 3ad2ant2 | |
15 | 10 3 12 14 | uzfissfz | |
16 | 5 | ad2antrr | |
17 | nfv | |
|
18 | 1 17 | nfan | |
19 | fzfid | |
|
20 | simpr | |
|
21 | 19 20 | ssfid | |
22 | simpll | |
|
23 | 20 | sselda | |
24 | rge0ssre | |
|
25 | fzssuz | |
|
26 | 25 3 | sseqtrri | |
27 | id | |
|
28 | 26 27 | sselid | |
29 | 28 4 | sylan2 | |
30 | 24 29 | sselid | |
31 | 22 23 30 | syl2anc | |
32 | 18 21 31 | fsumreclf | |
33 | 32 | adantlr | |
34 | fzfid | |
|
35 | 1 34 30 | fsumreclf | |
36 | 35 | ad2antrr | |
37 | simplr | |
|
38 | 30 | adantlr | |
39 | 0xr | |
|
40 | 39 | a1i | |
41 | pnfxr | |
|
42 | 41 | a1i | |
43 | icogelb | |
|
44 | 40 42 29 43 | syl3anc | |
45 | 44 | adantlr | |
46 | 18 19 38 45 20 | fsumlessf | |
47 | 46 | adantlr | |
48 | 16 33 36 37 47 | ltletrd | |
49 | 48 | ex | |
50 | 49 | adantr | |
51 | 50 | 3adantl2 | |
52 | 51 | reximdva | |
53 | 15 52 | mpd | |
54 | 53 | 3exp | |
55 | 54 | rexlimdv | |
56 | 9 55 | mpd | |